The Inhibitory Effect of Gallic Acid on Human Serum Cholinesterase

Sabah M.K. Al-Shafi*,1, Mohamed J. Al-Azzaw** and Methal A. Ali*

* Department Clinical Laboratory Sciences, College of Pharmacy, University of Baghdad, Baghdad, Iraq.
** Department Clinical Laboratory Sciences, College of Pharmacy, University of Baghdad, Baghdad, Iraq.

Abstract

The dried fruit peel of pomegranate in *Punicaceae* family was fractionated chromatographically on Sephadex LH-20 column. Gallic acid (trihydroxybenzoic acid) and its related galloyl esters were obtained homogenously. Different concentrations of gallic acid and gallotrim was used to determine their inhibitory effect on human serum cholinesterase. The enzyme activity was measured according to the method reported by the WHO. The inhibitory effect of these compounds on the activity of human serum cholinesterase have been studied in vitro. The inhibitory effect was remarkably clear with increasing concentration of gallic acid. Whereas galloyl ester showed no inhibitory effect. The inhibition with gallic acid indicates a noncompetitive pattern. Therefore, we can not recommended gallic acid and its related compounds, as preservative substances in food industry or in pharmacological preparations since they might have some side effect on certain biological systems.

Key words: Gallic acid, gallotannin, Human Serum Cholinesterase.

Introduction

Phenolic compounds are secondary plant products which rarely occur in the free state in growing plant tissue. Simple phenols are caustic substances and well known to be antimicrobial agents. Polyphenols like lignin and tannins are also found in plant cells. Tannins or tannic acids are believed to be the most important group of secondary metabolites involved in plant defense. It has been found that tannins have shown potential antiviral, antibacterial and antiparasitic effects. In the past few years tannins have also been studied for their potential effects against cancer through different mechanisms. Tannic acids are not single homogeneous compounds, but a mixture of esters of gallic acids with glucose whose exact composition varies according to their sources. The biological activation of gallic acid and its related galloyl esters have not yet been studied widely regarding their effect on enzymes. They are employed in medicine as astringents in the gastrointestinal tract (GIT) and on skin abrasions. In the treatment of burns, the proteins of the exposed tissues are precipitated to form a mildly antiseptic, protective coat under which they do not crystallize. Many plant species native to Iraq are known to contain certain chemical compounds which exert their effects on different biological systems within the cellular level such as enzymes. Chemically, these complex substances are usually occur as a mixture of polyphenols that are difficult to separate because they do not crystallize. The application of some chromatographic methods has enabled to confirm the complicated nature of these polyphenolic extracts and also to identify the simple phenols present in small amounts in such mixtures. In addition, it is of interest to improve methods of separation and identification of gallic acid and some of its related esters obtained from Iraqi plants. Aim of this work was conducted to study the effect of gallic acid and its related glucose esters such as gallotrimns on human serum cholinesterase in vitro.

1 Corresponding author E-mail: alshahisabah@yahoo.com
Received: 3/11/2007
Accepted: 8/3/2009
Materials and Methods

Extraction of plant material:
The fruit peel of Punicaceae in pomegranate family were obtained from Iraqi market. The peels of healthy fruit were dried at room temperature for at least six months, before they were powdered in a mortar and the powder was sieved through 100-150 mesh sieve. The powder (50g) was boiled for few minutes in 100ml ethanol (95%) and left with stirring for at least 3hr. The extract was decanted through fiber glass. The remaining residue was re-extracted twice with ethanol and the combined extracts were concentrated in vacuo to remove ethanol, the heavy viscous residue obtained as the phenolics materials.

Isolation and identification of phenolic substances:
Phenolic materials were chromatographed on Whatman No.1 paper in two dimensions with 6% (V/V) acetic acid (Solvent A) and isobutanol-acetic acid-water (14:1:5) (Solvent B)at 25±1°C. Phenolic compounds such as gallic acid and gallotannin (Table-1) were revealed by spraying with a freshly prepared reagents of ferric chloride-potassium ferricyanide Gibbs reagent. Saturated aqueous potassium iodate (KIO₃) reagent, and finally a fresh solution of nitrous acid reagent was prepared to give the phenolic compounds a characteristic color which helps in their identification. The phenolic extracts (10g) obtained as mentioned above was fractionated chromatographically on Sephadex LH-20 column (100x2.5cm) using the same methods as described previously. Sephadex LH-20 is very useful for separation tannin from nontannic phenols. Table-2 showed two substances (i.e. gallic acid and gallotannin) were obtained homogenously by fractionation.

The resultant substances, as in the following:

1- Gallic acid: Fractions 2 (130 ml) was dried at 25°C and 0.01mmHg over phosphorous pentoxide and rechromatographed once again over Sephadex-LH-20 column. The dried substance gave a pale-yellow-white form melting point (m.p.) 250-253°C. Rf values, showed 0.52 and 0.6 with solvent A and B respectively. Table-1 shows paper chromatograms when treated with a freshly prepared reagents revealed a characteristic colors exhibited by this compound. So under short -u.v. light (254nm) the chromatogram gave soft blue-violet appearance in visible light which turned to deep violet upon exposure to fuming ammonia. Elemental analysis found: C, 44.73% ; H, 4.34 %, calc. for C₇H₅O₅, as amorphous compound, (Lit² C, 44.70 %; H, 4.31%).

2- Gallotannin: Fraction 6 (105 ml) was dried and then rechromatographed in the same procedure as did for gallic acid. The dried substance gave an off-white granular solid; m.p. 200-210°C. Rf values on paper chromatogram showed 0.06 and 0.5 with solvents A and B, respectively. Table-1 shows a characteristic colors exhibited by gallotannin on paper chromatograms when sprayed with reagents. Gallotannin normally showed up as brown-purple spot on chromatograms when treated with Gibbs reagent. The chromatogram also showed a pink appearance with ferric chloride-potassium ferricyanide in visible light which turned to dark-blue absorption in u.v. light which enhanced by fuming with ammonia. Specific spray for gallotannins is Potassium iodate solution, which gives a rose–pink color and reacts with gallic acids to form the characteristic orange of purpurogallin carboxylic acids. Elemental analysis showed; C, 52.38 %; H, 3.48 %; calc for C₉HSO₂₆, as amorphous compound, (Lit² C, 52.35 %; H, 3.50%).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Spray</th>
<th>u.v light</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallic acid</td>
<td>Blue Brown</td>
<td>Orange→red→pink Brown Blue-violet→deep ep violet</td>
</tr>
<tr>
<td>Gallotannin</td>
<td>Pink Brown-purpule</td>
<td>Rose→pink→orange Brown Dark blue</td>
</tr>
</tbody>
</table>
Effect of gallic acid on cholinesterase

Enzyme activity determination:
Different concentrations (ranging from 6mM/L to 30mM/L) of gallic acid and gallotannin were used to determine their inhibitory effect on human serum cholinesterase in vitro. The enzyme activity was measured according to the method reported by the WHO\textsuperscript{20}, with minor modification as described in previous study\textsuperscript{17}. Enzyme activity was expressed as µ moles of substrate (acetylthiocholine iodide) hydrolyzed per ml of total mixture per min.

Results and Discussion

Chromatographic results for the fractions of the extract to detect the phenolic substances as compared with authentic compounds (Tables 1 and 2) showed that fraction 2 was identified as gallic acid, whereas fraction 6 identified as gallotannin. Also the u.v. light detection, various sprays, melting points and elemental analysis were applied to identify these compounds. These findings agree with standard authentic compounds obtained from pharmacy college stores (i.e. gallic acids and gallotannin) which showed in such close agreement as to indicate the identity of the substance previously. Also these findings agree with earlier reports\textsuperscript{15,20,25,27}. No clear inhibitory effect could be detected with different concentrations of gallotannin (ranging from 6 mM/L to 35mM/L) on human serum cholinesterase. This might be attributed to the presence of amber color which may interfere with the color developed as a result of enzymatic reaction. Decolorization of this solution might merit different results. The inhibitory effects of different concentrations of gallic acid on the enzyme activity were summarized in Table 3. It was found that increasing gallic acid concentrations will accordingly affect enzyme activity. Gallic acid concentration as low as 6mM/L results in approximately 10% inhibition (p<0.001) and reaching to about 50% inhibition with increasing concentration as high as 30 mM/L (p<0.0001). Such highly significant inhibition was unexpected firstly, because gallic acid which was considered as one of the phenolic compounds used as antimicrobial agent in industry\textsuperscript{20,29}, and secondly, it has not been reported before that phenolic compounds derived from native Iraqi plants exert such inhibitory effect on this enzymatic system i.e. human serum cholinesterase, a well-known biological function of being a neurotransmitter in animals and insects\textsuperscript{30}, its has a very high catalytic activity, that catalyzes the hydrolysis of the neurotransmitter acetylcholine into choline and acetic acid, a reaction necessary to allow a cholinergic neuron to return to its resting state after activation\textsuperscript{31}. Furthermore, the reciprocal Line weaver-Burk plot for the rate of reaction versus substrate concentration in the presence and absence of gallic acid (Fig.1) showed that the inhibition follows a noncompetitive pattern. This might be explained by that the inhibitor can not bound to the anionic site in the catalytic centre of the enzyme\textsuperscript{32}. The mechanism of action of such binding might be explained through the hydrogen bonding between the carboxyl group of the inhibitor and some catalytically significant group of the enzyme probably with the imidazole moiety of histidine in the static site of the enzyme molecule\textsuperscript{33}.

Table 2: Fractionation of gallic acid and gallotannin by column chromatography using Sephadex LH-20

<table>
<thead>
<tr>
<th>Fractions</th>
<th>Volume (ml)</th>
<th>Elution Solvent</th>
<th>Weight after drying (g)</th>
<th>Substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>212</td>
<td>Ethanol (100%)</td>
<td>5.56</td>
<td>Unknown</td>
</tr>
<tr>
<td>2</td>
<td>130</td>
<td>Ethanol (100%)</td>
<td>1.42</td>
<td>Gallic acid</td>
</tr>
<tr>
<td>3</td>
<td>137</td>
<td>Ethanol (90%)</td>
<td>1.70</td>
<td>Mixture of gallic acid and other phenolic substances</td>
</tr>
<tr>
<td>4</td>
<td>125</td>
<td>Ethanol (90%)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>118</td>
<td>Ethanol (90%)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>105</td>
<td>Ethanol (70%)</td>
<td>0.68</td>
<td>Gallotannin</td>
</tr>
<tr>
<td>7</td>
<td>195</td>
<td>Ethanol (60%)</td>
<td>0.54</td>
<td>Polyphenolic substances</td>
</tr>
</tbody>
</table>
Table (3): In vitro inhibition of human serum cholinesterase by different concentrations of gallic acid.

<table>
<thead>
<tr>
<th>Inhibitor mM/L</th>
<th>Enzyme Activity U/ml</th>
<th>% Inhibition</th>
<th>Recovery %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil</td>
<td>5.93 +1.8</td>
<td>Nil</td>
<td>100.00</td>
</tr>
<tr>
<td>06</td>
<td>5.44+ 1.6</td>
<td>08.22</td>
<td>91.69</td>
</tr>
<tr>
<td>12</td>
<td>4.76+ 1.4</td>
<td>91.69</td>
<td>80.36</td>
</tr>
<tr>
<td>18</td>
<td>4.32+1.3</td>
<td>27.24</td>
<td>72.74</td>
</tr>
<tr>
<td>24</td>
<td>3.83+ 1.3</td>
<td>35.67</td>
<td>64.52</td>
</tr>
<tr>
<td>30</td>
<td>3.24+ 1.1</td>
<td>45.15</td>
<td>54.38</td>
</tr>
</tbody>
</table>

Figure (1): Double – reciprocal plots for the inhibition of human serum cholinesterase in the presence (●) and absence (o) of 30 mM/L gallic acid. Acetylthiocholin iodide concentrations (s) were: 0.02, 0.04, 0.06, 0.08, 0.10 M/L.

Conclusion

Phenolic compounds, such as gallic acid derived from native Iraqi plants with antimicrobial activity might not be recommended to be used as preservative in food industry or in pharmacological preparations since they might exert some undesirable effects on certain enzymatic system such as serum cholinesterase.

Acknowledgment

We would like to thank all staff at store of pharmacy college for sending the authentic compounds (i.e. gallic acid and gallotannin) to assist our data during research time.

Reference


12- Ling-Ling Yang, Chih-Ying Lee, Kun-Ying Yen. Induction of apoptosis by hydrolyzable tannins from Eugenia

36
Effect of gallic acid on cholinesterase


33- Aldridge, W.N.; Some Properties of Specific Cholesterase with Particular reference to the Mechanism of Inhibition by Diethyl -P-nitrophenyl thiophosphate (E605) and Analogous.; Biochem. J.; 1950, 46 (4), 451-460.