تأثير الميثوكسي سورالين بوجود الأشعة فوق البنفسجية الطويلة الموجة (UVA) على حيوية كونديات الفطر أسبيرجيلس استيلودامي (8-MOP)

نافع قادر جرجبس
قسم علم الحياة
كلية التربية
جامعة الموصل

التاريخ الملاحظ: 7/11/2005)

الملخص
تم في البحث الحالي دراسة تأثير الميثوكسي سورالين (8-MOP) والأشعة فوق البنفسجية الطويلة الموجة (UVA) على حيوية كونديات الفطر أسبيرجيلس استيلودامي. ونظام تفاعل مع الماء للعلاق الكورنيدي للطر (UVA) ويوقع 15 ميكروغرام من السورالين لكل مل من العلاق الكورنيدي ومساء خمسة دقائق، ثم جرى تعرض العلاق الكورنيدي للأضواء فوق البنفسجية (UVA) لمساء قررت زمنية 0، 5، 10، 15، 25 و 30 دقيقة. ثم قمنا بقياس عدد الكندوز من المخلل العلاجات السرعة أعلاه، علسي أطلالات الألوان Sodiumdeoxycholate (D) والمضادات الملمع العادة (E) المثلج لمدة أربعة أيام بدرجة 30 م، بعدها يتم حساب عدد العلاجات في النتائج. وظهرت النتائج تفاعل مع زيادة فترة زمنية للتحت، وتم حساب النسبة المئوية لانخفاض عدد الكندوزات في المخلل العلاجات السرعة مقارنة مع المخلل العلاجات السرعة صفر للتحت.

The Effect of Methoxy Psoralen in Presence of UVA on the Viability of Conidia of the Fungus Aspergillus amstelodami

Rafia K. Girges
Department of Biology
College of Education
Mosul University

ABSTRACT

In the present research we studied the effect of 8-MethoxyPsoralen (8-MOP) and long wave ultraviolet (UVA) light on the viability of conidia of the fungus Aspergillus amstelodami.
The conidial suspension was treated with 8-MOP (15 mg/ml) for 5 min, and then exposed to UVA. Seven exposure times (0, 5, 10, 15, 20, 25, 30 min) were tested and appropriate dilution of the conidial suspension for each treatment was plated on minimal medium to which sodium deoxycholate (D) was added.

The plates were incubated for four days at 30°C. Viability of conidia was significantly reduced as the exposure time to NUV increased.

المقدمة


وهو يصرف بالقنال الحدبي (UV-A) وهذا يسمى بفعل الخلية يسمى الصيود (UV-B) لا يوجد في مريض (UVA) يسبب بشكل كبير في قدرة نشاط DNA يتسبب بشكل كبير في فقدان نشاط DNA ووجود UVA. ينتمي في هذه RNA إلى المتغيرات السورالين بجزء السورالين الذي ينتمي إلى DNA (Monoaducts) (Averbeck, 1989) ، (RNA-polymerase) RNA من الأنزيمات الفيتوسيولوجية التي تم دراستها في البكتيريا (E. coli) من الصور والبكتيريا (8-MOP) بالحمض النووي الشعري (Averbeck, 1989) ، (Ribonuclease) RNA وثبيط RNA. وعمل على تثبيط الأتموز (irRNA) الفيتوسيولوجية في الأحذية المعزولة DNA.

كما تم تبين أن تغييرات السورالين (8-MOP) في الزجاج ي البلع UVA يوجد في السرالينات بوجود سلسلة على تثبيط عملية تضعيط البروتينات (Scoti et al., 1976) وكذلك تعمل السرالينات على تثبيط RNA (Averbeck, 1989) وتشكل في حالتها المعزولة DNA. وتشكل جزء DNA
تأثر الميكروكيسي سورالان بوجود الأشعة UVA

السورالان بحث ذاتها تحوّل صورياً صوانياً تأكسدياً

باختصار تحرير الأوكسجين الحر الأولي وال탄ين (Free radicals and singlet oxygen)˚

والنتائج المتناقضة لسورالان ترتبط أساساً مع تركيبات ودهن عداء الخلية وهذا يعمل على تدمير عناصر الخلايا وخلايا البكتيريا.

(Dali Acqua and Martelli, 1991)

كما أن الإنزيمات التغذوية لسورالان (S-MOP) بوجود UVA لقي اهتماماً كبيراً من قبل الباحثين وقد درست تأثيره التأكسدي في مختلف الكميات الحية مثل فم فاج البكتيريا (Averbeck and Averbeck, 1978) E.coli وكبكتريا وخلايا الإنسان المزروعة (Sage et al., 1992) S. aureus ونادر السورالان (8-MOP) الموجود على جلوبية UVA

(ARawi, 2004; Girges, 1999; Kafer et al., 1986)

في البحث الحالي تم دراسة تأثير الميكروكيسي سورالان (8-MOP) بوجود UVA على جلوبية UVA.

Aspergillus anstemelani

تشخيص كهربات القشر

المعدات وطرازات العمل

كان الاختبار

استخدمت السلالة Aq (Wild type) للطبي الكيميائي استقلانتين مواد تي بيرمك

كونكبات خضراء اللون ومصدرها من قسم الوراثة بجامعة برمنغهام في إنكلترا.

الأوساط الزراعة وظروف الزرع

إن الأوساط الزراعة وظروف الزرع التي تم اختبارها هي كما وقع(1979).

Cuten

وقد استخدم وتوزيد أساسية لأغراض الماء والمواد الأيدي عبر المعاد

ورمز لم (M). وتم إجراء الاختبارات على هذا الوسط ووسط مستठر بالسوائل - ملثغ المعاد وهم detrmit Level (Maltestraet-Sal medium) وقد استخدم هذا الوسط للحصول على أعلى عدد من الكونيدات لتتحت بوصات الوعاء الزجاجي وتحت مثبطات مستقلة على نحو سريغ بضفاف الوعاء الزجاجي مطلبة (Complete supplement) ويرمز له (C) ويتركز نهائياً قدرة 5% (حجم إجمالي) ومكونات هذا المحلول كما مبينة في (Girges, 1999) ويرمز له (D) وتمكنت من بوصات عديدة مفردة بضفاف

الماء والقطار المائي وحمض البوتاسيوم.

Aspergillus

(Cuten, 1979) anstemelani.
المحلول الغزي للميتوكسيس سورالين (8-MOP)

هذا المركب غير قادر النهائية في الماء (Goodman and Gilman, 1975) ولذلك فقد تم تحضير محلول خزين منه باستخدام الكحول الأولي للفكوك وكانت قد تم تحضير محلول خزين من هذا المركب بتركيز مقداره 1000 ميكروغرام/مل من الكحول الأولي ويحتوي بعدا من الصوديوم ودرجة كم. (NUV)

مصادح الأشعة فوق البنفسجية القريبة (DUO-Strahler)

تم التشغيل باستخدام جهاز (DUO-Strahler) الذي يعمل بطول موجي 365/250 نانومتر.

دراسة النتائج النتائج للميتوكسيس سورالين على نمو الفطر استيرجلس مستلودامي

برواز هذا الانتهاز بطرق خصة على نطاقات الإطارات النافذة 8M وت anomalى تراكز معدة من العقار 8M وهي على التوالي 4, 8, 16, 32, 40, 80, 100, 140, 150 و 160 ميكروغرام من M و M ملل من مسطر الماء، بالإضافة إلى المثارة صغيرة أي الوسط 8-MOP العقار 8 لكل مل من الوسط الماء، وتم تحضير الأملاح المناسبة على الأذن مل من العقار (المعالجة صغيرة) كما تم تغذية التراكز الذي يتوقف عند الماء حول نقطة خزان

تحضير العنق الكودي

تم تحضير العنان الكودي من مزج النافذة بعمرة أربع أتام وتزويد على الوسط الخالي من الفطر (الدورة صغيرة)، كما تم تغذية التراكز الذي يتوقف عند الماء حول نقطة خزان.

MTS

المضاعف إيه محلول الإضافة الكاذبة (C) وهذه المزج النافذة أصلها ممتدة واحدة دابة على الوسط الأذن (D) والمصاحف إيه المحلول (M) والملح (C) والملح (M). وقد جرى تحضير 50 مل من العنان الكودي وكما بين (D) في AL-Rawi (2004).

دراسة ثقوب الميتوكسيس سورالين يوجد UVA على حيوية كوديات الفطر استيرجلس مستلودامي

يوجد من العنان الكودي الذي يتم تحضيره في النافذة (5) عينة صغيرة (حوالي 2 مل) لك كل المثارة صغيرة وتم حفر على 20 ملم من العنان الكودي فيما إلى مل من العنان الكودي بهم مثلا مثلا M ووضع الكودي (8-MOP) في وسط 15 ميكروغرام/مل (و ذلك بالإضافة إلى معرفي M ملل من حجر الميتوكسيس سورالين إلى 20 مل من العنان) وتم تحضير الطبق لمدة خمسة دقائق في الظروف المثالية مع التماسك المثالي لتحضير ذلك يتم تقسيم الطبق المثالي على العنان 8 إلى خز التشعبي (صندوق خشبي مظلم ووضع داخليه مصادح الأشعة فوق البنفسجية). وتحري عملية التشعبي بعد وضع الطبق مكثفًا على ممرك مكافئ في جلوس التشعبي
تأثير المذابح على البرتقال.

تم قتل عينة صغيرة (حوالي 3 مل) من العلقو في قنعة صغيرة معقدة بعد مسح كل من الخراط الدقيق (5، 10، 15، 20، 25، 30 دقيقة) وتبدي كل من هذه العينات في الخراطد في المذابح 0.1 للعامل المذابح. وتتكاثف النتائج ثم يتم قياس التفاعل كمоля في 1 مل من العلقو.

حساب العدد الحي للنكوينات

لحساب عدد الحيوانات لأي معاملة من المعاملات المذابحة، يتم تحصيل تفاعلات مسلسلة من العلقو في تغلى كرسي (10 مل) وإعداد التفاعلات (10 مل). ومن هذا الأخير يتم تفتيت سيلي 0.1 مل لكل 1 دقيق ثم زيادة التفاعل على الوسط الدقيق، ثم لفائف الأطراف بدرجة 30 مل./دقيقة.

إذاً يتم حساب عدد المستعمرات الناجية على كتلة الحيوانات وحسب المعاملة والمعالجة التالية:

العدد الحي للعامل المذابح × 100

العدد الحي للعامل المذابح

النتائج والمناقشة

ظهرت نتائج تجربة التأثير الشيكلي للمكلف في الديانة الأولى أن قطر المستعمرات الناجية في الجريان الأول (64 مل) على العلقو المذابح، والمذابح الأولى كانت قريبة من قطر المستعمرات الناجية على لون العلقو المذابح. وأيضاً أظهر التجربة أن هذه التأثير شيكلي لها تأثير تثبيت نمو الثديي على العلقو المذابح.

وقد قدرت قطر المستعمرات الناجية على التفاعل من 160 مل (MOP) في حالة استخدام كل من 32 مل مذابح 0.1 مل/صوديوم مذابح 0.1 مل. shareholder.

وقد قدرت قطر المستعمرات الناجية على التفاعل من 160 مل (MOP) في حالة استخدام كل من 32 مل مذابح 0.1 مل/صوديوم مذابح 0.1 مل. shareholder.

وقد قدرت قطر المستعمرات الناجية على التفاعل من 160 مل (MOP) في حالة استخدام كل من 32 مل مذابح 0.1 مل/صوديوم مذابح 0.1 مل. shareholder.

وقد قدرت قطر المستعمرات الناجية على التفاعل من 160 مل (MOP) في حالة استخدام كل من 32 مل مذابح 0.1 مل/صوديوم مذابح 0.1 مل. shareholder.
الحي للمعالجة صفر (دون تقار وبدون تشعيب) 178 × 10^5، بينما تراوح العدد الحي للتكوينات للشروحات التشريحيات السبعة: 10 25 10 20 15 5 (بتركيز 15 ميكروغرام/مل من العقار الكوديدي) بين 150 100 70 50 50 20 للقرفة الزردية للتشريحيات 30 دقيقة. وكذلك بين الجدول (2) للفترة المدورة للشروحات الخمسة للقرفة الزردية. وتشير هذه النتائج أن النتيجة البارزة وواضحة في هذه النسبة تلبى بـ 1.6% للقرفة الزردية للتشريحيات 5 دقائق وترتفع هذه النسبة بزيادة في الفترة الرورية للتشريحيات حتى تصل إلى 68.6% للقرفة الزردية 30 دقيقة. إن هذا التشفت في العدد الحي للتكوينات بعد معاملتها بالسورولين (8-MOP) ودراستها للأشعة فوق البنفسجية (UVA) يعني إلى عدة أسباب، وأهمها ارتباط السورولين يوجوه الضوء بالمضاعف الشريحي (Interstrand cross-Links) والكسوس للشروحات الراية DNA وفقدان كاف قدرة DNA. وفقًا لفترة الالتصاق (Photodisulfide) لتصل تكوين والذي ينجم عن تكوين الشروحات DNA محددة. كما أن السورولين بعد ذاته قد يحصل في جسمنا بشكل تدريجي.(Papadopoulou and Moustacchi, 1990)

والمؤثرات المتصلة بالشور الوفر يشير فئة التشابه الشامل يترافق مع البروتين وذو عوامل الخلايا، وهذا دليل على حفز الخلايا الكروية وبالتالي يؤدي إلى موت الخلية (UVA) وكذلك قد يعمل السورولين بواسطة منبسطة للشروحات الحيوية (Averbeck, 1989) في عملية تصنيع البروتين وبناء المكاسبصول المماثلة (ICL) تشخيص الشروط وحول البروتين والأنشطة المختلفة التي تتصفحها الخلية (Transcription).

(Upcic, 2000)

الجدول 1: أعداد المستعمرات (عدد) للطور (8-MOP)

<table>
<thead>
<tr>
<th>تركيز السورولين (ميكروغرام/مل)</th>
<th>0</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>مجموع</td>
<td>2</td>
</tr>
</tbody>
</table>

A camphorosorum (MOP) المروية على تركيز مختلف للعقار 8-

Raifayte Qader Al-Hamous


<table>
<thead>
<tr>
<th>الفئة الزمنية (مكرر 1)</th>
<th>المكرر (2)</th>
<th>مكرر (3)</th>
<th>مكرر (4)</th>
<th>معدل الهي</th>
<th>10^{-5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>مكرر (1)</td>
<td>132</td>
<td>132</td>
<td>132</td>
<td>132</td>
<td>186</td>
</tr>
<tr>
<td>مكرر (2)</td>
<td>610</td>
<td>610</td>
<td>610</td>
<td>610</td>
<td>610</td>
</tr>
<tr>
<td>مكرر (3)</td>
<td>968</td>
<td>968</td>
<td>968</td>
<td>968</td>
<td>968</td>
</tr>
<tr>
<td>مكرر (4)</td>
<td>1244</td>
<td>1244</td>
<td>1244</td>
<td>1244</td>
<td>1244</td>
</tr>
</tbody>
</table>

15 مابوغرامليم

المصادر الإحتمائية


