Aortic Diameter, Intima-media Thickness and Blood Flow Doppler Parameters of Aorta, Renal Artery and Intrarenal Arteries in Hyperlipidemic Male Rabbits

Akeel, AM., Hassan Zwain (PhD. UK)
Assistant Professor, Department of Physiology, College of Medicine, Kufa University.
E mail: drakeel49@yahoo.com

Abstract
Background: Cholesterol is a lipidic, waxy steroid found in the cell membranes and transported in the blood plasma of all animals. It is an essential component of mammalian cell membranes, where it is required to establish proper membrane permeability and fluidity. Abnormally high cholesterol levels (hypercholesterolemia); that is higher concentrations of LDL and lower concentrations of functional HDL are strongly associated with cardiovascular disease because these promote atheroma development in arteries (atherosclerosis). High cholesterol fed rabbits as an animal “model” has frequently been used to study atherosclerosis. However reports on Doppler study of atherosclerotic effects on blood flow of different size arteries in the rabbit are lacking.

Objectives: to assess the effect of cholesterol enriched diet on aortic diameter and intima-media thickness and blood flow velocities of the aorta, renal artery and intra-renal arteries in male rabbits.

Materials and methods: This study was conducted on 16 male rabbits. The animals were randomly divided into two groups (8 rabbits per group), Rabbits in the first group fed normal chow diet and those in the second group fed with 2% cholesterol enriched diet for 12 weeks. Blood samples were collected for measurement of serum lipids profile at the start and at the end of the study. Aortic diameter, its intima-media thickness and aortic, renal artery and intra-renal artery blood flow velocities were also measured by a triplex Doppler machine throughout.

Results & Conclusions: Feeding rabbits with 2% cholesterol enriched diet for 12 weeks results in a significant increase (P<0.05) in serum level of TC, TG, HDL, LDL and VLDL. Also there was a significant increase (P<0.05) in aortic diameter, intima-media thickness, resistive index, pulsatility index, renal artery and intra-renal arteries peak systolic velocity, resistive and pulsatility indices and renal aortic ratio in comparison to the normal control group. There was no significant change (P>0.05) in
aortic peak systolic velocity and aortic, renal artery and intra-renal arteries end diastolic velocities. It was concluded that cholesterol enriched diet increased the vascular resistance and caused development of renal artery stenosis as indicated by the increase in aortic, renal artery and intra-renal arteries resistive and pulsatility indices and increase in renal artery peak systolic velocity and renal /aortic ratio.

Key words: Aorta, Intima-media thickness, renal arteries, Atherosclerosis, Doppler, Rabbit

Introduction:
Atherosclerosis is a disease of the vessel wall involving lipid accumulation, chronic inflammation, cell death, and thrombosis that causes heart disease and stroke(4). Atherosclerotic disease including coronary artery disease is still the leading killer in industrial countries (22). The development of coronary artery disease is a lifelong process; hypercholesterolemia is one of the major risk factors for coronary artery disease. Epidemiological and experimental data have indicated that a high cholesterol–containing diet is highly related to the development of hypercholesterolemia and atherosclerosis (13).

A number of large epidemiological studies have identified numerous risk factors for the development and progression of atherosclerosis. The risk factors can be divided into modifiable and non-modifiable risk factors. Non-modifiable risk factors include increased age, male gender, family history and some genetic abnormalities (11). The most important modifiable risk factors include hyperlipidemia, hypertension, cigarette habituation, diabetes mellitus (10).

Atherosclerotic lesions (atheromata) are asymmetric focal thickenings of the innermost layer of the artery, the intima. They consist of cells, connective-tissue elements, lipids, and debris (8). Blood-borne inflammatory and immune cells constitute an important part of an atheroma, the remainder being vascular endothelial and smooth-muscle cells (23). The atheroma is preceded by a fatty streak, an accumulation of lipid-laden cells beneath the endothelium; most of these cells in the fatty streak are macrophages, together with some T cells (24).

There exist several reports demonstrating that rabbits develop hypercholesterolemia rapidly after excessive cholesterol feeding with the result of atherosclerotic changes in their aorta and pulmonary artery (16, 25, 30 and 31). However, until the time of writing this work, studies on Doppler assessment of blood velocities in the aorta and renal arteries in the rabbit are lacking.

Material and methods:
Animals and study design
This study was conducted on 16 local domestic healthy male rabbits of body weight ranging between 1400-1700 grams. Rabbits were housed in a well ventilated cages and allowed to drink tap water ad libitum, and fed with standard chow (oxiod) diet ad libitum. A 2 weeks period was allowed to elapse without interference for acclimatization. They were then randomly divided into 2 groups (8 animals per group),
the normal control group and atherosclerosis induced group. Rabbits in the normal control group were kept on standard chow diet and tap water throughout the duration of study and those in the atherosclerosis induced group were kept on atherogenic diet (a 2% cholesterol-enriched diet made by the addition of cholesterol powder to the oxid pellets)\(^{(21)}\) and tap water throughout the duration of study (12 weeks).

All rabbits were examined by Colored Doppler ultrasound machine at the start and at the end of the study. Doppler examination was performed at the morning after an overnight fasting to prevent the occurrence of intestinal gases which may prevent optimal visualizing of the arteries under study. The left lateral side was used for insonation, for technical reasons. Rabbits were sedated by administration of 5mg/kg body weight diazepam intra-peritoneal\(^{(21)}\) and their left lateral side and abdomen were shaved. A 7.5 – 10 MHz probe was used to insonate the aorta and renal arteries. The aorta was first visualized and identified by its characteristic pulsation and by using color flow Doppler; aortic diameter, its intima-media thickness (at the origin of renal artery) were measured. Care was taken to insonate all vessels under study at an angle of 0° and not to exert too much pressure on the flank or abdomen. The aortic blood flow parameters (peak systolic velocity, end diastolic velocity, resistive and pulsatility indices) were measured electronically by the software device built in the Doppler machine. The renal artery and intra renal arteries (Blood flow changes in the interlobar artery at mid pole used in the current study) of the left kidney were visualized and identified using color flow mapping and their blood flow parameters (peak systolic velocity and end diastolic velocity) were also measured as mentioned earlier.

The mean blood flow velocity (MV) is calculated using following equation
\[^{(26)}\]:

\[
MV = \text{diastolic velocity} + \frac{1}{3}(\text{peak systolic velocity} – \text{diastolic velocity})
\]

Renal Aortic Ratio (RAR) calculated from following equation\(^{(26)}\):

\[
\text{RAR} = \frac{\text{PSV in renal artery}}{\text{PSV in aorta}}
\]

Blood sampling were taken from central ear artery at the start and at the end of the study in order to measure serum lipids levels. The animals were then sacrificed and the aorta was excised for histomorphometric analysis.

Measurement of serum lipids level

From each rabbit blood samples were collected from the central ear artery without using heparin after an overnight fasting. The blood sampling was done at the start of the study i.e. at zero time and at the end of the study i.e. at 12 weeks. The blood samples were allowed to clot at 37°C and centrifuged at 3000 rpm for 15 min. Sera were removed, and analyzed for determination of serum total cholesterol, triglycerides and HDL-C by enzymatic methods using reagents supplies by BIOLABO SA. LDL-C and VLDL-C were calculated by the following equations\(^{(14)}\).

- **LDL = Total cholesterol – (HDL + VLDL)**
- **VLDL = serum triglyceride / 5**

Histopathological procedure

Rabbits were killed by administration of high dose of Phenobarbital intravenously. Aortic arch with about 1 cm of the descending aorta was resected. Sections were then examined by a microscope under magnification power of \(\times 4, \times 10\) and \(\times 40\), the histological changes were determined according to the American Heart Association classification of atherosclerosis\(^{(24)}\) which divides atherosclerotic lesions into six types as follows: Type I (initial) lesion: Isolated macrophage foam cells. Type II (fatty streak) lesion: intracellular lipid accumulation. Type III (intermediate) lesion: Type II changes
and small extracellular lipid pools. Type IV (atheroma) lesion: Type II changes and core of extracellular lipid. Type V (fibro-atheroma) lesion: lipid core and fibrotic layer or multiple lipid cores and fibrotic layers. Type VI (complicated) lesion: complicated fibro-atheroma with hemorrhage or thrombus

Statistical analysis

The data were expressed as mean ± SEM. Statistical analysis were done by using computer program (SPSS). In all tests P value <0.05 was considered to be statistically significant. Analysis of Covariance (ANCOVA) was used for comparison of differences among the groups.

Results

1. **Effect on serum lipids level**

 There was a significant increase (P<0.05) in serum level of total cholesterol, triglyceride, LDL, VLDL, and HDL in the atherosclerosis induced group after 12 weeks of atherogenic diet feeding in comparison to the normal control group as shown in table(1).

2. **Effect on aortic diameter, intima media thickness and blood flow velocity parameters**

 There was a significant increase (P<0.05) in aortic intima-media thickness, diameter, resistive and index, pulsatility indices after 12 weeks of atherogenic diet fed rabbits (atherosclerosis induced group) in comparison to the normal control group, but there was no significant difference in aortic peak systolic velocity and end diastolic velocity between the atherosclerosis induced group and normal control group as shown in table (2), and in figures (1, 2); figure (3) demonstrates Doppler spectrum wave form parameters of rabbit abdominal aorta. Figure (6) shows normal rabbit aortic wall layers; figures (7, 8 and 9) illustrate different stages of atherosclerotic changes in hyperlipidimic rabbit aortic wall layer

3. **Effect on renal artery blood flow velocity parameters and renal- aortic ratio**

 There was a significant increase (P<0.05) in renal artery peak systolic velocity, resistive index, pulsatality index and renal-aortic ratio after 12 weeks of atherogenic diet fed rabbits (atherosclerosis induced group) in comparison to the normal control group, but there was no significant difference in renal artery end diastolic velocity between the atherosclerosis induced group and normal control group as shown in table(3). An example of renal artery Doppler spectral wave form is shown in figures (4, 5).

4. **Effect on intra-renal arteries blood flow velocity parameters**

 There was a significant increase (P<0.05) in intra-renal arteries peak systolic velocity, resistive index and pulsatility index after 12 weeks of atherogenic diet fed rabbits (atherosclerosis induced group) in comparison to the normal control group, but there was no significant difference in intra-renal arteries end diastolic velocity between the atherosclerosis induced group and normal control group as shown in table (4). An example of intrarenal artery(Interlobar artery at mid pole of the kidney) Doppler waveform is shown in figure(5).
Table (1): Effect of cholesterol enriched diet on rabbit serum lipid profile in comparison to the normal control group

<table>
<thead>
<tr>
<th>Groups</th>
<th>TC (mg/dl)</th>
<th>TG (mg/dl)</th>
<th>HDL (mg/dl)</th>
<th>LDL (mg/dl)</th>
<th>VLDL (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>At zero time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal control</td>
<td>54.3±2</td>
<td>44.5±0.56</td>
<td>16.4±0.24</td>
<td>29±1.8</td>
<td>8.9±0.11</td>
</tr>
<tr>
<td>After 12 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal control</td>
<td>57.2±1.3</td>
<td>46.5±0.92</td>
<td>16.3±0.31</td>
<td>31.6±1.4</td>
<td>9.3±0.18</td>
</tr>
<tr>
<td>Dietary induced</td>
<td>721.3±9.4*</td>
<td>187.8±8*</td>
<td>19.3±0.73*</td>
<td>664.4±8.7*</td>
<td>37.6±1.6*</td>
</tr>
</tbody>
</table>

* P<0.01 (means of dietary induced group after 12 weeks versus means of normal control group after 12 weeks)

Table (2): Effect of cholesterol enriched diet on rabbit aortic diameter, intima media thickness (IMT), PSV, EDV, PI, and RI in comparison to the normal control group

<table>
<thead>
<tr>
<th>Groups</th>
<th>Aortic IMT in mm</th>
<th>Aortic diameter in mm</th>
<th>Aortic PSV in cm/s</th>
<th>Aortic EDV in cm/s</th>
<th>Aortic RI</th>
<th>Aortic PI</th>
</tr>
</thead>
<tbody>
<tr>
<td>At zero time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal control</td>
<td>0.3±0</td>
<td>2.22±0.09</td>
<td>31.3±2.4</td>
<td>3.33±0.56</td>
<td>0.84±0.018</td>
<td>1.93±0.1</td>
</tr>
<tr>
<td>After 12 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal control</td>
<td>0.32±0.02</td>
<td>2.28±0.09</td>
<td>31.8±3</td>
<td>3.67±0.62</td>
<td>0.83±0.022</td>
<td>1.87±0.11</td>
</tr>
<tr>
<td>Dietary induced</td>
<td>0.87±0.05**</td>
<td>2.78±0.11*</td>
<td>33.5±3.1</td>
<td>3.33±0.36</td>
<td>0.9±0.012*</td>
<td>2.24±0.079*</td>
</tr>
</tbody>
</table>

* P<0.05, ** P<0.01 (means of dietary induced group after 12 weeks versus means of normal control group after 12 weeks)

Table (3): Effect of cholesterol enriched diet on rabbit renal artery PSV, EDV, PI, RI and renal artery to aortic PSV ratio in comparison to the normal control group

<table>
<thead>
<tr>
<th>Groups</th>
<th>Renal artery PSV in cm/s</th>
<th>Renal artery EDV in cm/s</th>
<th>Renal artery RI</th>
<th>Renal artery PI</th>
<th>Renal artery / Aortic ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>At zero time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal control</td>
<td>44.5±4.6</td>
<td>22.83±2.4</td>
<td>0.483 ±0.024</td>
<td>0.72±0.057</td>
<td>2.13 ± 0.24</td>
</tr>
<tr>
<td>After 12 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal control group</td>
<td>46.2±5.6</td>
<td>24±2.8</td>
<td>0.480 ±0.01</td>
<td>0.71±0.021</td>
<td>2.18 ± 0.25</td>
</tr>
<tr>
<td>Dietary induced group</td>
<td>78.5±8.5**</td>
<td>30.5±4</td>
<td>0.607 ±0.043**</td>
<td>1.06±0.13**</td>
<td>2.39 ± 0.17**</td>
</tr>
</tbody>
</table>

* P<0.05, ** P<0.01 (means of dietary induced group after 12 weeks versus means of normal control group after 12 weeks)
Table (4): Effect of cholesterol enriched diet on rabbit intra-renal arteries PSV, EDV, PI, and RI in comparison to the normal control group

<table>
<thead>
<tr>
<th>Groups</th>
<th>Intra-renal arteries PSV in cm/s</th>
<th>Intra-renal arteries EDV in cm/s</th>
<th>Intra-renal arteries RI</th>
<th>Intra-renal arteries PI</th>
</tr>
</thead>
<tbody>
<tr>
<td>At zero time Normal control</td>
<td>42.7±6.7</td>
<td>21 ± 4.2</td>
<td>0.52 ± 0.022</td>
<td>0.81± 0.051</td>
</tr>
<tr>
<td>After 12 weeks Normal control</td>
<td>43.2±6.6</td>
<td>21.3 ±3.7</td>
<td>0.52 ±0.018</td>
<td>0.79±0.043</td>
</tr>
<tr>
<td>Dietary induced Untreated</td>
<td>63.7±7.8*</td>
<td>24.8 ±2.8</td>
<td>0.61 ±0.031*</td>
<td>1.03±0.084**</td>
</tr>
</tbody>
</table>

* P<0.05, ** P<0.01 (means of dietary induced group after 12 weeks versus means of normal control group after 12 weeks)

Figure (1): A B-mode ultrasound image showing a rabbit abdominal aorta with normal aortic wall thickness, D1 is the intima-media thickness = 0.3 mm , D2 is the aortic diameter = 2.1 mm

Figure (2): A B-mode ultrasound image showing a rabbit abdominal aorta with increased aortic thickness (sclerotic wall), there also dissemination of plaques and thrombi inside the aorta , D1 is the intima media thickness = 0.7 mm
Figure (3): A Doppler wave form spectrum showing a rabbit's aortic blood flow velocity, PSV=0.37 m/s, EDV=0.05 m/s, RI=0.86, S/D ratio=7.4

Figure (4): A Doppler wave form spectrum showing a rabbit distal renal artery blood flow velocity, PSV=0.60 m/s, EDV=0.19 m/s, RI=0.68, S/D ratio=3.2

Figure (5): A Doppler wave form spectrum showing a rabbit intra-renal artery blood flow velocity, PSV=0.56 m/s, EDV=0.23 m/s, RI=0.59, S/D ratio=2.4

Figure (6): A cross section of normal rabbit aorta shows the normal appearance of arterial wall layers: Lumen , Intact continuous endothelium (Intima), regularly arranged smooth muscle fibers (media) and adventitia . The section stained with haematoxylin and eosin (×4)

Figure (7): A cross section of hypercholesterolemic rabbit aorta demonstrating many lipid laden macrophages (Foam cells) that represent an early atherogenic event (fatty streak), the fatty streak affecting mainly the intima (Type-2 atherosclerosis). The section stained with haematoxylin and eosin (×10)
Figure (8): A cross section of hypercholesterolemic rabbit aorta demonstrating an early atherogenic event (fatty streak) affecting mainly the intima (Type-2 atherosclerosis). The section stained with haematoxylin and eosin (×40).

Figure (9): A cross section of hypercholesterolemic rabbit aorta demonstrating a more advanced fatty streak affecting the intima and extending down to the media (Type-2 atherosclerosis). The section stained with haematoxylin and eosin (×40).

Figure (10): A cross section from aorta shows wide spread fatty streak with irregular surface (diffuse intimal thickening and narrowing of lumen) (Type-3 atherosclerosis). The section stained with haematoxylin and eosin (×10).

Figure (11): A cross section from aorta shows an advanced wide spread atheromatous plaque involving both intima and media with early separation in the media (Type-4 atherosclerosis). The section stained with haematoxylin and eosin (×10).
Discussion

It has already been shown that arteriosclerosis of the coronary and peripheral vasculature is the leading cause of death among men and women in the United States and worldwide\(^\text{(22)}\). The present investigation was aimed to demonstrate in the rabbit the effect of hyperlipidemia induced atherosclerosis in different size arteries on blood flow velocities as calculated by colored Doppler equipment.

In the current study, a significant increase in serum TC, TG, HDL, LDL and VLDL levels was found in rabbits fed with cholesterol enriched diet as compared with that in the normal control group. These results are consistent with those previously reported by Alipour et al.\(^\text{(1)}\), Bauersachs et al.\(^\text{(3)}\), Howard and Culley\(^\text{(9)}\), Sun YP et al\(^\text{(25)}\), Mohammadi et al.\(^\text{(16)}\) and Zhu BQ et al\(^\text{(30)}\).

Intima-media thickness (IMT) is currently reported as an important index of atherosclerosis progression. It has been reported that baseline IMT can predict coronary heart diseases such as angina and non fatal myocardial infarctions\(^\text{(12)}\). Zulkhairi et al\(^\text{(31)}\) and McConnell et al\(^\text{(15)}\) reported that rabbits fed with cholesterol enriched diet showed significant increase in the aortic IMT, the results obtained from the present study have confirmed these observations.

Further, a significant increase in aortic diameter was found in rabbits fed with cholesterol enriched diet as compared to their values at zero time. This observation can be explained by the expansive (enlargement) arterial remodeling which was recognized as an important determinant in vascular pathology in which narrowing of the lumen is the predominant feature\(^\text{(15)}\). The present findings are in line with the observation of Armstrong et al\(^\text{(2)}\) who reported that radial enlargement of vessels occur in macaque monkeys fed with cholesterol enriched diet due to progressive plaque growth.

Concerning Doppler indices: There was no significant increase of aortic peak systolic velocity (PSV); in contrast, significant increase of renal artery and intra-renal arteries PSVs were found in rabbits fed with cholesterol enriched diet as compared to that of normal control group. These results are in agreement with that reported by Yamashita et al\(^\text{(28)}\), who found that the peak systolic velocity of atherosclerotic iliac arteries of rabbits increased significantly (2.1 times) in comparison to normal iliac arteries.

Figure (12): A cross section from rabbit aorta shows a fibrous atheromatous plaque with focal ulceration (Type-5 atherosclerosis). The section stained with haematoxylin and eosin (×40)

Figure (13): A cross section from aorta shows an advanced complicated atheromatous plaque with marked organization and sloughing (Type-6 atherosclerosis). The section stained with haematoxylin and eosin (×10)
The increase in renal artery and intra-renal arteries PSVs is due to the increased wall thickness and development of plaques in the arterial wall by cholesterol enriched diet feeding. When plaques protrude into the blood vessels, narrowing of vascular lumen occurs which leads to very high blood flow velocity through the stenosed region\(^6,29\). Moreover, the increase in blood flow PSV may be due to the fact that the atherosclerotic vessels are hardened and exhibit stiff and non compliant state\(^{27}\).

The finding that the aortic PSV was not increased significantly can be explained by the fact that the aortic lumen is larger and it is difficult for plaques to cause stenosis in such artery with a wide lumen to affect blood flow velocity.

Another observation to be mentioned is that the aortic PSV in some rabbits was found to decrease. This may be due to a possible development of heart failure which perhaps caused reduction in blood pumping capability of the heart and consequently reduction in aortic peak systolic velocity\(^{17}\).

Cholesterol enriched diet feeding to rabbits does not results in a significant change in aortic, renal artery and intra-renal arteries end diastolic velocities (EDV). These results may be explained as that the end diastolic velocity is not necessarily increased in stenosed arteries (normal or even low end diastolic velocity does not exclude critical vascular stenosis). EDV may be increased only in high degree of stenosis\(^{18,19}\).

Cholesterol enriched diet caused a significant increase in aortic, renal artery and intra-renal arteries RIs and PIs. These results can be explained by the fact that RI and PI are related to vascular resistance; and such increase in RI and PI is associated with arterial stiffness (which reflects systemic atherosclerosis)\(^5,18\).

There was a significant increase in renal aortic ratio (RAR) in rabbits fed with cholesterol enriched diet as compared to the control normal control group. This result may be explained as there was a significant increase in the PSV of renal artery and non significant increase in the PSV of aorta, this leads to significant increase in the RAR which is regarded as an important Doppler index used in the diagnosis of renal artery stenosis\(^7\).

In conclusion, Cholesterol enriched diet caused increase in IMT of the aorta of variable degrees, increased vascular resistance, and development of renal artery stenosis as indicated by the increase of RIs, PIs of aortic, renal artery and intra-renal arteries and increase in renal artery PSV and renal artery /aortic ratio.

Since it is possible to interrogate blood flow of the aorta and renal arteries in the rabbit, using Doppler technique, this work was extended further to study the effect of certain drugs such as statines and sildenafil on aortic and renal blood flow of hyperlipidaemic rabbits.

References

1. Alipour A., Mohammadi M., Zarghami N. and Ahmadiasl N. Influence of chronic exercise on red cell antioxidant defense, plasma malondialdehyde and total antioxidant capacity in hypercholesterolemic rabbits. Journal of sport science and medicine. 2006; 5:682-691
9. Howard HT. and Culley NC. Accumulation of low density lipoprotein associated cholesterol in calcifying vesicle fractions correlates with intimal thickening in thoracic aortas of juvenile rabbits fed a supplemental cholesterol diet. Lipids Health Dis. 2006; 5: 5-25

