The Organizational Factors Affecting Enterprise Resource Planning Systems (ERPs) Implementation Success

Dr. Salwa Alsamarai

Dr. Ziad. M.S Almashaqba
1.1 Introduction

This chapter aims to give an introduction for the study and will include an introduction about the study and discussing the research problem, importance of the study, research objectives, research questions, research model and contents.

Over the last decade organizations used to apply a modern Information Systems (ISs) to achieve its mission in a proper way, one of the most important systems are ERPs which let these organizations stay co-operated and in a good condition for competitive advantage.

ERPs is a software package used to apply data and its transformation to information to provide these organizations with their supply chain and the flow of materials from the upstream to the inventory then to the internal phase, then back again to inventory in some cases then to the down stream which means from suppliers until it reaches the consumer, also managing Human Resources (HR) in the companies and by this exclusives ERPs, companies will reduce inventory costs, better arrangements of business process in an accurate and quick way resulting a better job for these organizations to achieve its goals and objectives (Christopher, 2006).

ERPs ties all the separate Information Systems (ISs) used in the departments of the companies in one integrated system resulting a better understanding of the whole job of the organizations through sharing information and communications among users.

Separate systems did the job properly in a good way but there is no co-operations to know about the transaction and its process like the amount, date to be achieved, updates of the process, financial matter, time to market, but with the ERPs every one in any department can know all of the processors of the transaction on time and keep the process in better way, (Christopher and Koh, 2003) mentioned that organization, doesn’t have to buy the whole ERPs package as a condition to achieve its mission, but these companies may buy a separate package of ERPs like two or more, not all which means flexibility for these organization to choose the better ERPs resulting in saving more money and no more costs.

1.2 Importance of the Study.

The importance of this study comes from discussing the critical factors affecting ERPs implementation success in Jordanian business
organizations, since it is used newly beginning and researcher trying to find out the reasons behind the factors which affect the proper use of it. Since ERP(s) used newly in Jordan business organizations so the study trying to enrich the studies in ERP implementation.

Also, the important of the study comes from the benefits and outcomes expected to be done by ERPs (Wah, 2000), like construction by improving efficiencies through computerization, Enhance decision making by providing accurate and timely enterprise-wide information.

ERPs brings lots of these benefits to the organization through integrating the sub systems in one system resulting in cost reduction and supporting decision making, as well as user and customer satisfaction.

(Elisabeth & Michael, 2006) stated that ERPs implementation is not a technical project but it's a people project so the study will concentrate on how people be a critical factor in ERPs implementation success and at the same time individuals are one of the information systems elements.

1.3 Research Objectives.

The study aims to measure and analyze the effects of critical factors affecting ERPs implementation success In Jordan. Stating a theoretical framework and developing a contribution related to the variables of the study through reviewing the related literature examined the factors that impact ERP system implementation success from the system users’ perspectives. Also the other research objectives are:

(1) Investigating the real use of ERPs in Jordanian business organizations.

(2) Developing a conceptual model with the suggested critical success factors may affect ERPs implementation success in Jordan.

(3) Discussing how these systems work over seas because the organizations at Alhassan Industrial City (AIC) have a business relation out doors.

1.4 Problem Statement.

For almost every organization, there are obstacles to be overcome during ERP implementation process, also there are limited firms in number applying this new technology of the information systems in developing countries addressed to several reasons, so this study will explore and analyze the critical factors affecting the implementation success process of ERPs In Alhassan Industrial City companies in Jordan.
Since Alhassan Industrial City (AIC) is the biggest city of the Qualified Industrial Zones (QIZ) there is lack of information on the real use of ERPs in these organizations because these cities are a good example of applying the World Trade Organizations (WTO) and (FTA) between Jordan and the united states, which means the order put down by the customer from out doors and crude materials from another country and even Human Resources (HR) from outside Jordan also.

1.5 Research Hypotheses

Ho : There Is No Significant Impact of The Organizational Factors on ERPs Implementation success.

Ho (1): There is no significant impact of the top management support on ERPs implementation success.
Ho (2): There is no significant impact of organizational culture on ERPs implementation success.
Ho (3): There is no significant impact of function on ERPs implementation success.

1.6 Research Methodology.

Research Population.
Will be the professional workers from different levels who work in Alhassan Industrial Zone which apply ERPs in their companies.

Research Sample.
Will be drawn randomly from all professional workers in these companies.

Instruments.
A survey. Through developing a questionnaire was designed and tested then distributed to the targeted sample based on the conceptual model.

1.7 The Research Model

After deep study of the literature review, the researcher recognizes that the eighteen study included in the literature were varied in choosing the factors affecting ERPs implementation success and were criticized by the researcher, after analyzing these factors there were a discrepancy in choosing and studying them, so the researcher develop a model to be the backbone to the study, and stated two main hypothesis contains six sub hypothesis with six factors may affect the ERPs implementation success in Qualified Industrial Zone in Jordan, these factors were divided into two major groups which are : the organizational factors as it is the most
important part in the organization which may affects ERPs implementation success, it included three elements: Top management support, Culture, and Function, which is the most important element to achieve the managerial jobs in qualified manner, Figure (1.1) shows the research model with the proposed independent factors affecting ERPs implementation success.

ENTERPRISE RESOURCE PLANNING SYSTEMS (ERPs)

2.1 Introduction
Every body these days is talking about change, especially when living in a turbulent word with a main feature which is changing in every aspect and almost every thing, even adopting this idea may been a cause of bringing leaders to be a head of the most developed countries means that change is a need especially these days which is the only fixed reality (Young, 2007). Business organizations are also comply to change in doing jobs, when seeing almost all of the principals of how to run the job changed also, affecting the existence of these organizations, more than the matter of competition, so they tried to get a benefit of any new methods to get along with them and to stay in a good position to achieve their goals, more than this, a marketing writer stated that "you should go faster if you want to stay in your present place" (Kottler, 2000). The last two decades brings to business organizations a lot of advents emerges from the acceleration of technology and especially Information Technology (IT), one of these marvelous technology is enterprise resource planning systems (ERPs).

2.2 The Concept of ERPs, Benefits, and Limitations
2.2.1 The Concept of ERPs
The idea behind the enterprise resource planning systems (ERPs) comes from a need to an exclusive system brings to business organizations better solutions to run it's job in proper, speed, accurate way, designed to leverage it's efficiency and profit as well, based on modern computer applications.

ERPs defined as asset of combination of software (SW) programs based on business organization need and tying all the separate systems in one system, one screen, so it ties the systems of human resources (HR), accountant, finance, inventory, production, marketing, all in one system facilitate job runs and raise the efficiency of employees, and giving more reliability, flexibility, saving time and effort of all the people and managers work in the organization, and it will be really a better way to
run job in the turbulence environment, also being ready to receive and
development in the coming future, in parallel with the development of
information technology which is changing also from time to time
(Karen, 2007)

Literature of information systems is full of definitions of ERPs stated
by different authors, (Zhang, 2005) define ERPs as a software which
integrates all of the activities among functional departments, and it may
include modules for application, for finance, HR, business aspects and
accounting.

(Kumar and Hillegersberg, 2000) define enterprise resource planning
as "configurable information system packages that integrate information
and information-based processes within and across functional areas in an
organization". They added that these systems built on one database one
application across the whole enterprise.

But (O’Leary, 2000), defines ERPs as a packaged software designed
according to a client server environment (Frank & others, 2006).

Another definition of ERPs stated by (Brown & Vessey, 1999) "online
interactive system that can provide 'total' solution to an organization's
information systems needs by addressing a large proportion of business
functions" (Jenine, and others, 2001).

Researcher defines ERPs as an integrated software used as a whole or
partially in business organization to facilitate function's best of use to put
the business organizations in a good position and to a chief it's goals in
flexibility, accuracy and speed.

2.2.2 ERPs Benefits

From the definitions of ERPs above reader can get several benefits of
ERPs and it is for sure created for a benefit of business organizations in
purpose, authors stated several benefits of ERPs (Zhang et al, 2002).
(1) For the improvement of customer service.
(2) Production scheduling in better way.
(3) Manufacturing cost reduction.

2.2.3 ERPs Limitation

No doubt that ERPs brings some limitations while applying this
system in business organizations, lots of authors and researchers see that
ERPs has several limitations, (Jenine Beekhauy and others, 2001) stated
the following limitation according to several authors:
(1) ERPs have a negative effect in work practice as well as culture.
(2) Prior to actual use of ERPs there should be a special support called technical support.

(3) A need to consulting component for ERPs customization for increasing acceptance of this new system.

(4) Need of time as trial use for about eight months in average to see ERPs benefits first.

(5) To some extend ERPs implementation is nearly a costly matter which means organizations avoid to apply this system especially in its beginnings.

2.4 ERPs Implementation Issues

ERPs implementation is away or a method to use ERPs in the organizations, either it is fixed for the first time or the updating of the legacy system or constructing the system for the first time.

(Krantz, 2005) defines ERPs implementation as a complex issue because it consumes time to achieve it and will resulting in a valuable changes in the organization once implementing it as it is an integrated way of business processes.

2.5 Critical Factors of ERPs Implementation

ERPs implementation is an integrative process, needs more time to be in effective place, needs several parties in the organization to cooperate and coordinate properly, so it is not a matter of a snapshot, all of these issues seen different from different authors who study ERPs implementation success, some of them study two factors, others add several factors until it reached twenty issues or more (Seddan et al, 2003)

Researcher chose two categories of these factors, each contains three selected factors to be investigated in this study because of different reasons shown as the most effective factors especially for the organizations work in our environment which is the developing countries environments, the two categories are the organizational factors and user factors.

2.5.1 Organizational Factors

ERPs implementation is an organizational issue, as it will be implemented in the organization, so researcher wanted to investigate these factors, as these organizations differ in the managerial interests, stake holder's support, cultural issues and functions.

2.5.1.1 Top level Management
As the study conducted in a developing country, so there is a great power of the top level managers in deciding nearly all of the managerial decisions and having a power and willingness to take a strategic decisions like implementing a new methods, systems in their organizations or not, so managers can support any of organizational change or not, if the willing is available or if they convinced.

(Somers and Nelson, 2003) stated top level management as a number one factor of a critical factor affecting ERPs implementation but in 1999 Slevin saw the top level management from two faces:

1. Leadership provider.
2. Necessary resources provider.

More to say that managers should have a willing to conduct changing in the organization. (Bhatti, 2005).

Top management support has an effects on employees to reinforce their commitment in the enterprise for ERPs project (Bingi al et al, 1999), also (Jiang et al,1996) conducted a survey of information systems success factors, Top level management support ranked as a third most important factor of the other thirteen factors used in the study. (Fiona, 2003)

2.5.1.2 Organizational Culture

This factor been chosen by this study as a sub factor of the organizational factors may affecting ERPs implementation success because ERPs implementation is a teamwork issue, which means all of the people work in the organization involved in doing and applying ERPs, and because of this conclusion, culture being a very important factor and need to be concentrated on especially in dealing with information technology information systems invented in western countries and once we want to apply this new technologies in developing countries it will be a cultural issue, which known as Information Technology Transfer (ITT) issues. (Rasmy, 2004).

2.5.1.3 Organizational Function

Organizational function chosen by this study as a critical success factor in ERPs because ERPs ties all of the organization functions in one unique System. So business organization use several departments like human resources, Accountant, Finance, Inventory, Production, Marketing etc, and each department used to have a separate system, once business transaction conducted in these departments and go from one station to another as a tool of what’s called Supply Chain Management (SCM), so it is a valuable issue to study how the organization run the process and the whole transaction from the first time customer placed the order until the order been processed through a well organized series of actions till the time the order been ready and sent to the customer in a system the study focuses on ERPs allowing all involved parties to view and track the
process from its beginning until the mission has been accomplished (Markus et al., 2000).

ERPs Debated Issues

3.5 Cultural Issues

The study took place in Egypt, one of the developing countries, and because of its low success rate of applying ERPs in this country, researchers put ERPs implementation success as a dependent variable.

The study was an explanatory study tried to see the impact of several critical success factors on ERPs implementation success, they develop a research model using American customer satisfaction index.

The conceptual model was tested empirically through a survey involving (45) Egyptian organizations adopting ERPs. Researchers collected data and analyzed it using Partial Least Squares (PLS) technique.

The result show that the critical issues should be considered to ensure a good implementation of ERPs, and the study paid attention to cultural issues when applying ERPs, and finally the study presented a self-assessment tool for ERPs users in Egypt, this tool is targeted to serve people who implement ERPs.

This study took place in China, and discussed the relation between critical success factors and the implementation success focusing on generic and some unique factors. Researchers used to collect data and analyzed it using a survey methodology, also through using an equation modeling technique.

The aim of the study was to improve understanding of critics factors affecting ERPs in China.

Researchers used a pilot study, (47) applicable responses returned with response rate (34%), then they used statistical package for social sciences (SPSS) to analyze data. Six respondents are subsidiaries of foreign companies with ratio (12.8%), indicated validity of Chinese organizational culture. The users of ERPs are from industries of electronics products, and mechanical and transport equipments, with (68.1%) ratio of total respondents, most of the people who completed the questionnaire are from manufacturing departments, material management, information technology (IT), procurement and accounting.
Researcher developed a scale to test the proposed model, which has two independent variables of business process reengineering (BPR) and organizational culture which researchers assume it as important factors in ERPs implementation in China. They faced several limitations in the generalization of the research results addressed to the large population; they stated that many researchers conduct a case study only to discover the problems of ERPs implementation because there is a lot of complex factors may affect ERPs implementation.

3.7 Project Managers Involvement
The study conducted two longitudinal studies of ERP implementations, it discussed the perceptions of the projects managers towards (21) critical success factors expected to influence the outcome of ERPs implementation. Researchers suggested several stages of project development at each company.
The study utilized to follow two companies over an eighteen month period a variety of methods were used to track the progress of ERPs implementation including semi-structured interviews, observation, and documentation, e-mail updates and survey instruments.
Results concluded that shifting in emphases during ERPs implementation from, top management support, objective and goals together with strong communication been critical in the project life cycle.
Results also showed that Issues in implementation related to the use of vendors located in different places of objectives and goals and added value by international vendors and enhancement of project team.

(2) Jiang Yingjie, (2005), *Critical Success Factors in ERP Implementation in Finland*, M.Sc. Thesis in Accounting at the Swedish School of Economics and Business Administration
Based on reviewing literature, the researcher identified six critical success factors, which are:
(1) Top management support.
(2) Effective project management.
(3) Business process re-engineering (BPR).
(4) Suitability of Soft ware (SW) & Hard ware (HW).
(5) Education.
(6) Training.
The researcher developed a questionnaire divided into two parts: the first part used to collect data regarding a certain factors like time, budget and functionality of the systems, and the second part show the perception by
respondents of the importance role of CSFs affecting ERPs implementation.
The questionnaire was mailed to (676) Finish companies with separate envelop and the information about companies chosen from the blue book data base of the companies which is supplier of business contact and marketing information of targeted companies in Finland.
At the beginning of 2004 the researcher send these letters with the questionnaire to the CFOs and CIOs in (676) companies, (142) responses were received, (84) were analyzed with ratio, (21%) in English language. Results showed that out of the six factors only the two factors top management support and "suitability of SW & HW" proven as an important factors in ERPs implementation success in Finland.

METHODOLOGY

4.2 Data Collection

4.2.1 Research Population.
Research population will be the professional workers from different levels who work in Alhassan Industrial City (AIC) which apply ERPs in their companies.

4.2.2 Research Sample.
Research sample drawn randomly from all professional workers in these companies, who use ERPs in their companies.

4.2.3 Instruments.
A survey: through developing a questionnaire will be designed and tested then distributed to the targeted sample based on the conceptual model. Researcher chooses a sample of managers who worked in the companies implementing ERPs at Alhassan Industrial city. So (293) questionnaires were distributed and (110) were received and after canceling (8) questionnaires, (102) questionnaires were analyzed with ration (34.81)%, which is sufficient, table (4.1) shows the number of the respondents to the survey.

Table (4.1) Number of Respondents to the Survey.

<table>
<thead>
<tr>
<th>Number</th>
<th>Organization’s Name</th>
<th>Number of Surveys Sent</th>
<th>Number of Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Century Company</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>2.</td>
<td>Century Miracle Company</td>
<td>104</td>
<td>42</td>
</tr>
<tr>
<td>3.</td>
<td>Century Suite Company</td>
<td>51</td>
<td>20</td>
</tr>
<tr>
<td>4.</td>
<td>American Jordan Company (jordash)</td>
<td>59</td>
<td>18</td>
</tr>
<tr>
<td>5.</td>
<td>Almaseera Company</td>
<td>29</td>
<td>11</td>
</tr>
</tbody>
</table>
4.2.4 Questionnaire Developing Phases

The measurement tool was a questionnaire which has passed several steps until reaches the current one in order achieve the research goals, so the developing phases were as follows:

After reviewing literature related to ERPs researcher stated and organized the research questions annex (A) after putting down the main dimensions according to the research model, which are independent factors critical factors CFs and dependent factor ERPs implementation, researcher distribute the questionnaire to several specialists instructors from public and private universities to get their valuable notes and most of these notes were regarded, see annex (F).

The Questionnaire Consists of Two Parts:

Part 1: Personnel general information for the sample, so it includes gender, age, and education, it is important to state this information in because individuals are one of the main components of management information systems.

Part 2: Aims to measure the critical factors affecting ERPs implementations through a groups of questions (1-68) measure the main hypotheses and researcher tries to stay away from the routine questions in order to get better answers for the accuracy of the measurement tool.

Likert Scale Adopted As Follows:

Strongly disagree	Takes grade	1
Disagree	Takes grade	2
Undecided or neutral	Takes grade	3
Agree	Takes grade	4
Strongly agree	Takes grade	5

Means, and standard deviations was adopted by researcher for the reply of the sample on questionnaire questions in order to pin point the degree
of practice according to the impact of CFs on ERPs implementation success.

Means for The Sample Reply Classified as Follows:
* High level practice: if mean (3.51-4).
* Middle level practice: if mean (2.51-3.50).
* Low level practice: if mean (1-2.50).

Questionnaire Special Test

Instrument Validity.
This test aimed to be sure that the measure used in this study measures what need to be measured (Zikmond, 1994) and in order to be sure of the researcher distribute the questionnaire to the targeted sample which called (face validity).

Instrument Reliability.
Instrument reliability is one of important tests which means necessity to get the same information, even when using the questionnaire more than one time, also means fixed results out of questionnaire at the same level through using Statistical Package For Social Science (SPSS) to get cronbach alpha for all the questionnaire factors and it is high assuring the accuracy.

Table (4.2)

Initial Cronbach Alpha Values for All the Questionnaire Factors

<table>
<thead>
<tr>
<th>No</th>
<th>Variable</th>
<th>Number of paragraphs</th>
<th>Alpha value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Top management support</td>
<td>10</td>
<td>.7866</td>
</tr>
<tr>
<td>2.</td>
<td>Organizational culture</td>
<td>10</td>
<td>.9210</td>
</tr>
<tr>
<td>3.</td>
<td>Function</td>
<td>10</td>
<td>.9353</td>
</tr>
<tr>
<td>4.</td>
<td>ERPs implementation success</td>
<td>8</td>
<td>.7708</td>
</tr>
</tbody>
</table>

4.2.6 Questionnaire Distribution
After being sure of face validity of the research tool the (questionnaire) were distributed to the targeted research sample professional workers who in the organizations from different levels using ERPs, (102) questionnaires were analyzed.

4.3 Statistical Methods Used
Statistical Package for Social and Scientific (SPSS) used in analyzing data, the suitable methods used in analyzing data depend upon the type of data and the purpose of analysis, in this study researcher used different methods for the benefit of the research, the following methods used:
4.3.1 Reliability Test

This test used in order to measure the amount of internal consistency of the measurement tool. As an indicator for its consistency, this method is one of the most methods used to be sure of the method consistency which includes several elements, in this test, cronbach coefficient calculated which resulted from questionnaire element’s analysis. When ever the values of cronbach alpha high degree of internal consistency will be high and acceptable indicator on the consistency of the measurement tool.

4.3.2 Descriptive Statistical Methods: (Descriptive Statistical Techniques).

Researcher used descriptive statistical methods in general to obtain readings overview of the characteristics and features of the structure or composition of a school and distribution, as was the use of the technique to compare the different groups that constitute a society or a sample study, included descriptive statistical methods using iterative distribution and dispersion measurements and percentages, and measurements of central tendency.

4.4 Factor Analysis

Factor analysis is a statistical method used in analyzing data for the purpose of clarifying relations among variables giving a new supposed variables called factors, the main mission of the factor analysis is to analyze variables data in two ways: first to reduce the original variables number called factors, second the number of factors produced from the characteristics among relations.

There are two types of factor analysis, first exploratory factor analysis (EFA) which is used when the relation among variables and factors are unknown, which will be suitable for this study, the second type is confirmatory factor analysis (CFA) which used to test assumed relations among variables.(Field, 2005).

4.4.1 Exploratory Factor Analysis (EFA).

Exploratory Factor Analysis is a statistical method used when the relations among variables are unknown to identify the number of factors. Exploratory Factor Analysis is used to determine the number of variables that are needed for correlation explanation among a set of observed variables, in other words EFA reveals patterns among the inter-relationship of the items. (Coughlin & knight,2007).
EFA Objectives
The primary objectives of EFA are to determine:
The number of common factors.
The strength of the relationship between factors.
EFA Common Uses:
To identify the nature of the constructs in specific area.
To determine the most important features when classifying a group of items. (DeCoster, 1998).

4.5 Multiple Regression
Regression is a mathematical formula expresses the relation between two variables like (X & Y), Regression used to predict the future relation based on the well known values to reach the future values.
There are two ways of regression analysis one is simple regression and the other one used in multiple regression, the two ways used in this study and the most important one was the second one which is the multiple regression analysis because the study uses six factors affecting the dependent variable and this way also known as stepwise methods which means once the six variables entered so this technique show the stepwise effect from the independent variable to the dependent variable, also supported by the researcher comments as well.

Model Operationalization and Data Analysis

5.2 Analysis and Discussion of the Study Variables
Sample’s intended behavior towards CFs affecting ERPs implementation success, researcher stated several factors been chosen from several factors studied by different researcher in different areas of the word, and the study factors been chosen according to the developing countries environment and grouped in (68) questions as shown in the research questionnaire included to answer the research questions through chosen the suitable analysis method for this purpose with grouping these variables in categories according to the correlation relation between these factors.
Each group been formed a factor to measure the relation between CFS and ERPs implementation success, researcher used exploratory factor analysis method as it's the appropriate method for this sake.
Results shows that the (68) questions explain (0.407) % total variance, researcher grouped these questions in seven factors, according to the variables and organized in questionnaire, tables will contain means and standard deviation values for each variable to show the degree of practice by research sample, finally after conducting factor analysis through using
exploratory factor analysis, (19) questions were excluded from the analysis, (49) questions were considered in the research analysis due to the following factor analysis because of extracted less than (.50) %, loaded on more than one factor, and loaded uniquely on one factor. (Field, 2005).

5.2.1 Organizational Factors Analysis

Top Management Support

This factor consisted of ten variables measured the concept of top management support, two variables were excluded and eight questions were analyzed, variables (9) and (10) excluded because top management support is always apart of change projects and for the new and legacy systems (see annex A).

Table (5.1) shows means and standard deviations for the research sample intentions toward the top management support in Alhassan QIZ companies using ERPs, means were fluctuated from (4.11) to (3.08) which refers to a high practice in presenting the top management presents all support and trust to the MIS manager at the end of preparing the project, and the less practiced variable was the top management support in order to developed, top management support average mean was (3.9) with (0.9) standard deviation and it is a high level practice.

<table>
<thead>
<tr>
<th>Question No</th>
<th>Question</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>The top management presents specialized managers in order to supervise ERPs in our</td>
<td>4.10</td>
<td>1.00</td>
<td>.750</td>
</tr>
<tr>
<td></td>
<td>company</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2.</td>
<td>The top management present support to the solution presented by the system.</td>
<td>3.96</td>
<td>.85</td>
<td>.795</td>
</tr>
<tr>
<td>3.</td>
<td>The top management presents all support and trust to the MIS manager at the end of preparing the project.</td>
<td>4.11</td>
<td>.76</td>
<td>.766</td>
</tr>
<tr>
<td>4.</td>
<td>The top management presents sufficient support for the work team who is responsible of ERPs.</td>
<td>4.03</td>
<td>.84</td>
<td>.845</td>
</tr>
<tr>
<td>5.</td>
<td>The top management presents human resources once upgrade the ERPs.</td>
<td>3.80</td>
<td>1.04</td>
<td>.709</td>
</tr>
<tr>
<td>6.</td>
<td>The top management presents sufficient money required for upgrading ERPs from time to time.</td>
<td>3.94</td>
<td>.96</td>
<td>.784</td>
</tr>
<tr>
<td>7.</td>
<td>Top management presents full support to the maintenance operation needed to the system in our company.</td>
<td>4.00</td>
<td>.76</td>
<td>.732</td>
</tr>
<tr>
<td>8.</td>
<td>Top management support system in order to be developed as a system to support decision making</td>
<td>3.08</td>
<td>.99</td>
<td>.719</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>3.87</td>
<td>0.9</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Table (5.2) shows Kaiser-Meyer- Olkin (KMO) & Bartlett’s of Sphericity Measures value for the variables relating to the top management support and KMO was (.853) which reflects the degree of common variance and it was (Meritorious) which indicates significance and the patterns of correlations are reliable factors, also the table shows Bartlett’s of Sphericity value which was (430.844) and it is significant for all values relating to this factor, which specify the existence of relationships among variables, and therefore the factor analysis is appropriate.
Organizational Culture

Teamwork

This factor consists of ten variables, measures the concept of organizational culture which is important organizational factor to understand IS applications, after conducting (EFA) the factor divided in to two factors, and two variables were excluded (14 and 19), (see annex A) because of talking about the learning organizations which is not matching the other eight variables in measuring organization culture.

Table (5.3) shows the first factor which is Teamwork which consists of four variables, variable (17) concerning ERPs in the company contribute in enhancing knowledge sharing between the employees & shows high practice with mean (3.78) which means the companies at QIZ concern about sharing work between workers, variable (13) was moderate in the degree of practice with (3.56) concerning the companies contribution in enhancing the teamwork, teamwork average mean was (3.67) with (1.13) standard deviation and it is a high level practice.

Table (5.3)
The Mean Average & Standard Deviation Scores of Sample’s Intended Behavior Towards Teamwork

<table>
<thead>
<tr>
<th>Question No</th>
<th>Question</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.</td>
<td>ERPs in our company contribute in enhancing the teamwork.</td>
<td>3.56</td>
<td>1.30</td>
<td>.867</td>
</tr>
<tr>
<td>16.</td>
<td>ERPs in our company contribute in sense of responsibility of the employees.</td>
<td>3.70</td>
<td>1.04</td>
<td>.743</td>
</tr>
<tr>
<td>17.</td>
<td>ERPs in our company contribute in enhancing knowledge sharing between</td>
<td>3.78</td>
<td>1.05</td>
<td>.820</td>
</tr>
</tbody>
</table>

KMO and Bartlett's Test

| Kaiser-Meyer-Olkin Measure of Sampling Adequacy | .853 |
| Bartlett's Test of Sphericity | Approx. Chi-Square | 430.844 | df | 28 | Sig. | .000 |

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.

Bartlett's Test of Sphericity

Approx. Chi-Square 430.844, df 28, Sig. .000
the employees.

18. ERPs in our company contribute in developing mutual trust between the employees.

 Average

<table>
<thead>
<tr>
<th>Question No</th>
<th>Question</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.</td>
<td>ERPs in our company contribute in developing communications (inwards & outwards).</td>
<td>3.91</td>
<td>1.03</td>
<td>.906</td>
</tr>
<tr>
<td>20.</td>
<td>ERPs in our company contribute in enhancing mutual ideas & experiences between the employees.</td>
<td>3.56</td>
<td>1.09</td>
<td>.684</td>
</tr>
<tr>
<td>11.</td>
<td>ERPs in our company contributes in developing the production of groups</td>
<td>4.14</td>
<td>.89</td>
<td>.675</td>
</tr>
<tr>
<td>12.</td>
<td>ERPs in our company contribute in enhancing employee's innovation.</td>
<td>3.36</td>
<td>1.13</td>
<td>.678</td>
</tr>
</tbody>
</table>

Innovation

Table (5.4) shows the second factor of the cultural factors which is innovation which consists of four variables, variable (11) concerning ERPs in the companies contributes in developing the production of groups shows high practice with mean (4.14) which means the companies at QIZ concern about groups, variable (12) was moderate in the degree of practice with (3.36) concerning ERPs in the company contribute in enhancing employee's innovation, average mean was (3.7) with (1.03) standard deviation and it is a high level practice.
Table (5.4) shows Kaisers-Meyer-Olkin (KMO) & Bartlett’s of Sphericity Measures value for the variables relating to the organizational culture (teamwork & innovation) and KMO was (.790) which reflects the degree of common variance and it was (Meritorious) which indicates significance and the patterns of correlations are reliable factors.

Also the table shows Bartlett’s of Sphericity value which was (486.289) and it is significant for all values relating to this factor, which specify the existence of relationships among variables, and therefore the factor analysis is appropriate.

Table (5.5)

<table>
<thead>
<tr>
<th>KMO and Bartlett’s Test</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaiser-Meyer-Olkin Measure of Sampling Adequacy</td>
<td>.790</td>
</tr>
<tr>
<td>Bartlett's Test of Sphericity Approx. Chi-Square df Sig.</td>
<td>486.289</td>
</tr>
</tbody>
</table>

(4) Organizational Function

Organizational function factor consist of nine variables, measures the concept of organizational function as it is important organizational factor to understand IS applications, after conducting EFA the factor divided into two factors which are function and integration, as well as variable (29) were excluded because it talks about employees need which if not measuring the organization function. (see annex A).

Function
Table (5.6) shows the mean average & standard deviation scores of Sample’s intended behavior towards organizational function, variable (28) concerning minimizing cycle time shows high practice with mean (3.82) which means the need for cycle time reduction was the highest level practice, but Variable (24) was moderate in the degree of practice with (3.62) concerning continuing use of the ERPs contributes in creating new usages by the employees which had not recognized before means that there is no need for more practicing ERPs and it is fair because working on these systems doesn’t need special effort regardless training the first time or later but for sure important for the first or when upgrading system. Organizational function average mean was (3.72) with (1.06) standard deviation and it is a high level practice.

Table (5.6)
The Mean Average & Standard Deviation Scores of Sample’s Intended Behavior Towards Organizational Function

<table>
<thead>
<tr>
<th>Question No</th>
<th>Question</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.</td>
<td>Continuing use of the ERPs contributes in creating new usages by the employees which had not recognized before.</td>
<td>3.62</td>
<td>1.10</td>
<td>.687</td>
</tr>
<tr>
<td>25.</td>
<td>ERPs in our company contributes in minimizes inventory cost, and logistics support for people and production.</td>
<td>3.72</td>
<td>1.05</td>
<td>.840</td>
</tr>
<tr>
<td>26.</td>
<td>ERPs in our company supplies sharing information between employees.</td>
<td>3.80</td>
<td>.98</td>
<td>.862</td>
</tr>
<tr>
<td>27.</td>
<td>ERPs in our company contribute in developing interactivity among departments.</td>
<td>3.69</td>
<td>1.12</td>
<td>.797</td>
</tr>
<tr>
<td>28.</td>
<td>ERPs in our company contribute in minimizing the</td>
<td>3.82</td>
<td>1.08</td>
<td>.744</td>
</tr>
</tbody>
</table>
cycle time of production operations.

<table>
<thead>
<tr>
<th>Question No</th>
<th>Question</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.</td>
<td>ERPs in our company increase the company’s ability to be accommodated according the nature of the company’s work.</td>
<td>3.70</td>
<td>1.04</td>
<td>.880</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>3.72</td>
<td>1.06</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Integration

Table (5.7) shows the second factor of the cultural factors which is integration which consists of three variables, variable (22) concerning ERPs in the company contribute in achieving integration with the other operations in the company through data integration, shows high practice with mean (4.16) which means the companies at QIZ concern about groups, variable (23) was moderate in the degree of practice with (3.79) concerning ERPs in the company contribute in highly supporting decision making process, average mean was (4.03) with (0.94) standard deviation and it is a high level practice.

Table (5.7)

The Mean Average & Standard Deviation Scores of Sample’s Intended Behavior Towards Integration

<table>
<thead>
<tr>
<th>Question No</th>
<th>Question</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.</td>
<td>ERPs in our company contribute in achieving integration with the other information systems in the company.</td>
<td>4.14</td>
<td>.91</td>
<td>.815</td>
</tr>
<tr>
<td>22.</td>
<td>ERPs in our company contribute in achieving integration with the other operations in the company through data integration.</td>
<td>4.16</td>
<td>.78</td>
<td>.912</td>
</tr>
<tr>
<td>23.</td>
<td>ERPs in our company contribute in highly supporting decision making process.</td>
<td>3.79</td>
<td>1.14</td>
<td>.698</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>4.03</td>
<td>0.94</td>
<td>0.80</td>
</tr>
</tbody>
</table>
Table (5.8) shows Kaiser-Meyer-Olkin (KMO) & Bartlett’s of Sphericity Measures value for the variables relating to the organizational function & integration and KMO was (.854) which reflects the degree of common variance and it was (Meritorious) which indicates significance and the patterns of correlations are reliable factors.

Also the table shows Bartlett’s of Sphericity value which was (693.747) and it is significant for all values relating to this factor, which specify the existence of relationships among variables, and therefore the factor analysis is appropriate.

Table (5.8)

<table>
<thead>
<tr>
<th>Kaiser-Meyer-Olkin Measure of Sampling Adequacy.</th>
<th>.854</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bartlett's Test of Sphericity</td>
<td>Approx. Chi-Square</td>
</tr>
<tr>
<td></td>
<td>df</td>
</tr>
<tr>
<td></td>
<td>Sig.</td>
</tr>
</tbody>
</table>

(4) ERPs Implementation Success

ERPs implementation success factor consist of eight variables, measures the concept organizational function is important organizational factor to understand IS applications, after conducting (EFA) only three variables entered analysis, and five variables removed which are (61,62,63,65,67) because of dealing with the success in details which were not suitable in measuring this factor.(see annex A).

Table (5.16) shows the mean average & standard deviation scores of sample’s intended behavior towards ERPs implementation, variable no (68) concerning ERPs applied in our company contributes in supporting and success of the decision making process in all the organization departments through presenting information needs with mean (4.12) which means, and variable no (66) was moderate in the degree of practice comparing with the other factors with mean (3.57) concerning the ERPs applied in the companies contributes in supporting ERP process through presenting required and needed information low because of not knowing the whole system and they use their access according to their need for their specialization, ERPs implementation success factor
average mean was (3.84) with (1.06) standard deviation and it is a high level practice.

<table>
<thead>
<tr>
<th>Question No</th>
<th>Question</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>64.</td>
<td>ERPs applied in our company contribute in the ease of sharing process and exchanging of information among all of users working in the company.</td>
<td>3.83</td>
<td>1.00</td>
<td>.840</td>
</tr>
<tr>
<td>66.</td>
<td>ERPs applied in our company contribute in supporting ERP process through presenting required & needed information.</td>
<td>3.57</td>
<td>1.25</td>
<td>.853</td>
</tr>
<tr>
<td>68.</td>
<td>ERPs applied in our company contributes in supporting and success of the decision making process in all the organization departments through presenting information needs.</td>
<td>4.12</td>
<td>.93</td>
<td>.698</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>3.84</td>
<td>1.06</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Table (5.16) shows Kaiser-Meyer- Olkin (KMO) & Bartlett’s of Sphericity Measures value for the variables relating to the ERPs implementation success and KMO was (.635) which reflects the degree of common variance and it was (Mediocre) which indicates significance and the patterns of correlations are reliable factors, also the table shows Bartlett’s of Sphericity value which was (65.346) and it is significant for all values relating to this factor, which specify the existence of
relationships among variables, and therefore the factor analysis is appropriate.

Table (5.17)

KMO and Bartlett's Test

<table>
<thead>
<tr>
<th></th>
<th>Kaiser-Meyer-Olkin Measure of Sampling Adequacy.</th>
<th>Bartlett's Test of Sphericity</th>
<th>Approx. Chi-Square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.635</td>
<td></td>
<td>65.346</td>
<td>3</td>
<td>.000</td>
</tr>
</tbody>
</table>

5.3 Data Analysis

5.3.1 Sample Characteristics Description

Table (5.19) showed sample distribution according to the personal and occupation characteristics (gender, age, educational level, occupation and experience), it shows that males represent (73.0) % but females represent (26.5) %.

Table (5.19)

Sample’s characteristics variables (n = 102)

<table>
<thead>
<tr>
<th>No</th>
<th>Characteristics variables</th>
<th>Frequency</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>75</td>
<td>73.5</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>27</td>
<td>26.5</td>
</tr>
<tr>
<td>2.</td>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Less than 30 years</td>
<td>38</td>
<td>37.3</td>
</tr>
<tr>
<td></td>
<td>30-39 years</td>
<td>51</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>40 – 49 years</td>
<td>13</td>
<td>12.7</td>
</tr>
<tr>
<td>3.</td>
<td>Educational level</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Higher Diploma & less</td>
<td>7</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>BC</td>
<td>89</td>
<td>87.3</td>
</tr>
<tr>
<td></td>
<td>MA</td>
<td>6</td>
<td>5.9</td>
</tr>
<tr>
<td>4.</td>
<td>Current Occupation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Top level management</td>
<td>18</td>
<td>17.6</td>
</tr>
<tr>
<td></td>
<td>Middle management</td>
<td>55</td>
<td>53.9</td>
</tr>
<tr>
<td></td>
<td>Low level management</td>
<td>29</td>
<td>28.4</td>
</tr>
<tr>
<td>Experience</td>
<td>Less than one year</td>
<td>19.6</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>1-5 years</td>
<td>34</td>
<td>33.3</td>
<td></td>
</tr>
<tr>
<td>6-10 years</td>
<td>40</td>
<td>39.2</td>
<td></td>
</tr>
<tr>
<td>11 years and more</td>
<td>8</td>
<td>7.8</td>
<td></td>
</tr>
</tbody>
</table>

This result matches most of the studies discussing personal characteristics in the same climate in the developing countries because the males mainly go to work more than females who still think that females must get married and being a house keeper, that’s why researcher found that males were (73.5)% and female working in the same companies (26.5)%.

Sample distribution according to their age, results refers that (38) persons from people who work on QIZ companies their age were less than 30 years old with (37.3)% ratio, (30-39) were (51) person with (50)% ratio this class represent the highest within age variable once we take the two classes it becomes (87.3) which means that the most of people work at this age, class (40-49) were (13) persons with (12.7)% ratio whom are the lowest class because of early retirement and leaving service for several administrative reasons, and that’s why the study did not find any person in the class (50– and more).

Educational level results refers that the majority of research sample who hold BC were (89) with ratio (87.3)% which reflects the importance of the job conducted by the ERPs users which needs more qualifications, also means that these companies need this ratio to run the managerial work and some professional IT managers, research sample who has MA were (6) with (5.9)% ratio, the reason might be companies intention to develop it’s personnel through hiring highly educated people to occupy the senior management positions.

Regarding the current occupation researcher classified research sample in three classes top level management, middle management, and low level management sample studied distributed as It shown in table (5.19), results shows that (18) persons with (17.6)% ratio were in top level management class (55) persons with middle level management with ratio (53.9), and finally (29) persons with (28.4)% ratio from low level management. These results refers to the concentration of research sample in the middle which was a normal distribution as the majority of the employees in any organization will fall in this class, the concentration of this class was in the middle management because of the distribution of middle managers on the different department of the organizations.

Regarding years of experience the study found that (20) persons were having (less than one year) service with (19.6)% ratio, in (1-5) years were (34) persons with (33.3)% ratio, (6-10) years (40) with (39.2)% ratio, and finally (8) persons with (7.8)% ratio.
Experience shows that most of personnel were classified in class (6-10) years because of the company's age of QIZ which started less than 10 years ago and people started their job nearly at the same time of companies age QIZ.

5.3.2 Multiple Regression Analysis

Research Hypotheses
After conducting EFA through the previous model operationalization the research hypothesis was changed and analyzed as follows:
(1) Organizational Factors:
Ho: There Is No Significant Impact of The organizational factors on ERPs Implementation success.
Ho (1): There is no significant impact of the Top management support on ERPs implementation.
Ho (2): There is no significant impact of Teamwork on ERPs implementation.
Ho (3): There is no significant impact of Innovation on ERPs implementation
Ho (4): There is no significant impact of Integration on ERPs implementation
Ho(5):There is no significant impact of Organizational Function on ERPs implementation
For showing the impact of organizational factors on ERPs implementation success analysis done through using multiple regression and results was as follows:
Table (5.20) shows variable entered for regression analysis to show the impact of organizational factors on ERPs implementation success, the two variables out of the five factors entered which are organizational function, but teamwork, innovation, and integration were excluded.

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables entered</th>
<th>Variable removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Function</td>
<td></td>
<td>Stepwise</td>
</tr>
<tr>
<td>2.</td>
<td>Top level management</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dependent Variable: ERPs Implementation Success

Table (5.21) shows the stepwise method for organizational function factor and explains (.612) out of the total variables in affecting ERPs implementation success, but top management support explains (.710) of the total variables, and teamwork, innovation, and integration showing
no valuable impact ERPs implementation success among the five variables.

Results show that the variable concerning of top management support has a strong relationship on the dependent variable ERPs implementation success and table (5.21) also shows that $R = (.843)$ for the top management support and $R^2 = (.710)$ which means that $(.863)$ comes from this factor.

Table (5.21) shows F value $F = (157.821)$ with (0.000) significance and (121.475) sig on (0.000) for the top management support which means the high effect of the organizational functions on the ERPs implementation success and also means that any increase of the organizational functions will increase the success of the ERPs implementation success.

Table (5.21)

Regression Results for the Impact of Organizational Factors on ERPs Implementation Success

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Independent variable</th>
<th>Beta</th>
<th>Sig Beta</th>
<th>T</th>
<th>Sig T</th>
<th>R²</th>
<th>F</th>
<th>Sig F</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERPs Implementation Success</td>
<td>Function</td>
<td>.56</td>
<td>.00</td>
<td>8.62</td>
<td>.00</td>
<td>.61</td>
<td>157.82</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td>Top management support</td>
<td>.38</td>
<td>.00</td>
<td>5.79</td>
<td>.00</td>
<td>.71</td>
<td>121.47</td>
<td>.00</td>
</tr>
</tbody>
</table>

From the results shown before there is a significance impact from the organizational factors on ERPs implementation success and this will reject the negative hypothesis and accept the alternative one witch stated that there is a significant impact of organizational factors on ERPs implementation success, teamwork, innovation, and integration were excluded because they have no statistical effect on ERPs implementation success, this means acceptance of the hypothesis Ho (2), Ho (3), and H (4).

Table (5.22) shows the excluded variables of the organizational factors and (t) value and sig(t) for teamwork, innovation, and integration, which means that these factors have no valuable effects on ERPs implementation success.
FINDINGS DISCUSSION & RECOMMENDATIONS

6.2.1 Results From The Personal Characteristics

1. Results showed from studying gender category that (75) of research sample were males with ratio (73.5)% but the remainder were (27) females with ratio (26.5)% because of the nature of Jordan society because most of the workers were males especially in the industrial sector.

2. Results showed from studying the age category that (38) with ratio (37.3)% of research sample were from the age category (less than 30 years), (51) with ratio (50)% from the class (30-39) years, (13) with ratio (12.7)% from the class (40-49) years, the majority were from class less than 30 years old because most of people go to work after finishing the first university degree and this result interpret the age of the QIZ companies which matches the class of age found by the study.

3. Results showed from studying educational level category that (7) with ratio (6.9) higher diploma and less, (89) with ratio (87.3)% from the class BC, (6) with ratio (5.9)% from class MA, and no one has a PhD level of education, the reason behind this result is the need of the higher education level to run the job especially when using such a marvelous systems like ERPs.

4. Results showed from studying occupation category that (18) with ratio (17.6)% were from the class top level managers, (55) with ratio (53.9) from middle management class, and (29) with ratio (28.4)% from the class of low level management, the majority were from the middle management class because of the nature of the services presented by the ERPs which developed to support the systems in middle level management, so users from this level should be from this category.

5. Results showed that the maximum sample experience were from the class (6-10) years were (40) with ratio (39.2)% and the minimum were from the class (11) years and more, were (8) persons with ratio (7.8)%. And in between were the class from (1-5) years (34) persons with ratio (33.3)%, this result matches the result concerning the age of the sample as well as the age of the companies work in QIZ and they began...
work at these companies after finishing the first university degree, so that is why the majority were from this category.

6.2.2 Results From Testing Hypothesis

6. Results showed that there was a significance impact from the top management support on ERPs implementation success and this will reject the negative hypothesis and accept the alternative one which stated that there is a significant impact of on ERPs implementation success, the result assure the important role of the top management support to the new technology because applying these systems is a high level management decision, this result got along with the study by (Jiang, 2005), and (Rasmy, 2004) who conduct his study in an environment like the Jordan environment.

7. Results showed that there was a significance impact from the function on ERPs implementation success and this will reject the negative hypothesis and accept the alternative one which stated that there is a significant impact of function on ERPs implementation success, this result reflects the knowledge of users on how to use these systems, and the result matches the results by (Ching, 2006).

18. Results show that the mother companies controls the ERPs and the system imposed by the mother company.

19. Results show that companies applies ERPs do not use the system totally but it used some systems to support the main ERPs, like using the Human Recourse Information System (HRIS) separate on the system and they don’t integrate these systems because of the high cost to upgrade the ERPs.

20. Results show that there is a positive effect of the CFs on ERPs implementation success because these factors been chosen to reflect the real use of numerous ERPs implementation success used by several researchers, secondly the research questionnaire were designed and well translated to take an accurate reflection to measure the reality of ERPs practice, regardless a prejudge actions, and this was clear from testing relation coefficient between research dependent and independent factors.

6.3 Recommendations

1. Top level management should pay their attention to the support needed from their side to the change management and they should not regard only how this new technology cost.

2. Companies should concentrate on training, and do not train their employees for the first time, they should believe on the both sides of the training process on the job training and off the job training as well.
3. Companies should use an integrated ERPs as a whole and they have not to divide it in a small parts and integration of the systems should become as a whole.

4. Companies should rejuvenate the legacy systems they use and upgrade their systems from time to time as the development of the IT technology accelerates constantly.

5. Companies should concentrate on the scientific research, because this matter will develop a new methods of doing job very well and pave the way to a new technologies to be seen in the coming future.

6. Companies should pay their attention to the organizational culture because it is very important for the ERPs implementation success and it is a teamwork and it the responsibility of every one in the organization.

7. Companies should try to search for solutions as an alternative way to the internet to do their job on an alternative way to the internet like the intranet

References

22. Frank Agyemang Duah, Kingsley Asante Ofori,(2006), Promise And Performance Of ERP, (Perspective Of Implementers), jönköping International business school
25. Janet Lee-Shang Lau, & Rasmy (2004), Enterprise Resource Planning (ERP) Implementation In The Egyptian Organizational Context, Cairo University, Egypt
29. José Manuel & Joan A, (2002), Understanding The ERP Project Champion Role And Its Criticality. ECIS Gdansk, Poland
45. M. H. Rasmy, Assem Tharwat, Sondoss Ashraf, Enterprise Resource Planning (ERP) Implementation in the Egyptian Organizational
55. Santipat. A, (2005), Information Technology Adaptation By Companies In Thailand: A study Of ERPs Usage, University of Wollongong
60. Slater,(1999), How To Choose The Right ERPs Software Package, CIO, site.
70. Zikmond,(1994),Business Research Methods, 4th edition , the Dryden press, Orlando