A STUDY ON BLOOD PARAMETERS OF BARBUS XANTHOPTERUS, BARBUS SHARPEYI AND THEIR HYBRID

Department of Marine Vertebrate., Marine Science Centre, University of Basrah, Basrah.
(Received, 1 November 2010, Accepted 6 March 2011)

Keywords: Barbus xanthopterus, Red Blood Cells, hybrid.

ABSTRACT

The blood parameters of Red Blood Cells for Barbus xanthopterus, Barbus sharpeyi and B. xanthopterus X B sharpeyi (hybrid) were mentioned. The dimensions of Red Blood Cells (length and width) for the fish B.xanthopterus, B.sharpeyi and their hybrid were as follows: (6 and 4 microns; 5 and 3 microns; 6 and 4 microns). Hb content values for the above mentioned fish, were as follows: 5.18, 5.323 and 4 g/100 ml.

PCV values for the above mentioned fish were as follows: 68.25%, 100% and 42.85714%. RBC numbers for the above fish were also mentioned as follows: 3450000, 3550000 and 33000000cell/1mm³.

INTRODUCTION

The cellular picture of fish circulating blood is much more complex compared to mammals, because of the presence, besides mature blood cells, of blastic cells capable of proliferation and maturing cells of particular development lineages. It is a result of action of many haemopoetic centers, as a lack of the most evolutionarily specialized centres - the bone marrow which is present in other vertebrate taxa from amphibians upwards (1).
The erythropoetic activities initiated in mesenchymal cells of yolk sac, this is the ontogenetically primary site of erythrocyte formation. Further development may take place in the mass of intermediate embryonic cells (2). In many species, haemopoietic were well studied but it is difficult to determine which organ produces each type of blood cell. In fishes, haemopoiesis starts with a pluripotential cell-the haemocytoblast from which directed, monopotential stem cells of various development lineages arise (3; 4).

The study of fish blood parameters is important for determining factors related to its physiological capacity (5; 6). Hematocrit, hemoglobin and the erythrocytic hemoglobin concentration values indicate the oxygen carrying capacity in teleosts. Such parameters are highly varied among the species, they interfer in oxygen-carrying capacity (5; 7; 6). The blood of all species that have nucleated erythrocytes has the common property of very rapid clotting after it is removed from the body. Among these the blood of the turtle is probably the slowest to clot, while fish and eel blood are at the other extreme (8).

MATERIALS AND METHODS

The fish were taken from a clean water pond in fish breeding farm of Marine Science Centre, the specimens are quite healthy and they were of the same size and age group (length 95-105mm, weight 90-110 g). The blood test-samples taken through heart puncture were located in Monovet units with anticoagulant, EDTA (9). Hemoglobin estimation (g/ 100 ml) was done by using Sahli apparatus previously treated with EDTA. Red Blood Corpuscles were counted by using Neubaur Improved Haemocytometer. Ten micro liters of blood was absorbed by a special absorbing glass tube and diluted by Dacie’s fluid then Red Blood Cells in five small squares were counted (10; 11). Dimensions of RBC (length and width) were also measured.
Packed Cell Volume (PCV) was done by filling hypernized Microhaematocrit tubes. They were closed from one end and put in microcenterfuge (3500 revolutions/minute) for five minutes, then the results were read by using microhaematocrit reader (12).

RESULTS

The following tables illustrate the parameters of Red Blood Cells (RBC Count, Haemoglobin Estimation, Packed Cells Volume, Red Blood Cell Dimensions). Table (1) illustrates RBC counts for the fish *Barbus xanthurus*, *Barbus sharpey* and *Barbus xanthopterus X B. sharpeyi*: 34 50000, 3550000 and 3300000 cell / 1mm3 respectively.

Table (1): shows RBC Counts for the above mentioned fish.

<table>
<thead>
<tr>
<th>Fish species</th>
<th>Number of RBC Per 1 mm3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. xanthopterus</td>
<td>3450000 ±77781</td>
</tr>
<tr>
<td>B. sharpeyi</td>
<td>3550000 ±52431</td>
</tr>
<tr>
<td>B. xanthopterus X B. sharpeyi (Hybrid)</td>
<td>3300000 ±67329</td>
</tr>
</tbody>
</table>

Hb content values for the above mentioned fish were as follows: 5.18, 5.323 and 4 g/1oo ml respectively (Table,2).
Table (2): Haemoglobin estimations for the above mentioned fish.

<table>
<thead>
<tr>
<th>Fish species</th>
<th>Concentration of Hb (g/100 ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. xanthopterus</td>
<td>5.18 ± 0.22</td>
</tr>
<tr>
<td>B. sharpeyi</td>
<td>5.3280 ± 0.43</td>
</tr>
<tr>
<td>B. xanthopterus X B. sharpeyi (Hybrid)</td>
<td>4 ± 0.32</td>
</tr>
</tbody>
</table>

Table (3) explains the PCV values for the above mentioned fish were as follows: %68.25396, %100 and %42.85714.

Table (3): Packed cell volume (PCV %)

<table>
<thead>
<tr>
<th>Fish species</th>
<th>PCV%</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. xanthopterus</td>
<td>68.253 ± 3.55</td>
</tr>
<tr>
<td>B. sharpeyi</td>
<td>100 ± 4.32</td>
</tr>
<tr>
<td>B. xanthopterus X B. sharpeyi (Hybrid)</td>
<td>42.857 ± 3.87</td>
</tr>
</tbody>
</table>

Table (4) shows the dimentions of Red Blood Cells (length & width) for the fish B. xanthopterus, B. sharpeyi and their hybrid were as follows; (6 & 4 µ : 5 & 3µ ; 6 & 4µ) respectively. Figures (1,2,3) show the dimentions of Red Blood Cells (length & width) for same above mentioned fish.
Table (4): Dimension of RBC for the above mentioned fish.

<table>
<thead>
<tr>
<th>fish species</th>
<th>Dimension of RBC in microns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Length</td>
</tr>
<tr>
<td>B. xanthopterus</td>
<td>6</td>
</tr>
<tr>
<td>B. sharpeyi</td>
<td>5</td>
</tr>
<tr>
<td>B. xanthopterus X B.sharpeyi (Hybrid)</td>
<td>6</td>
</tr>
</tbody>
</table>

Figure (1): Photographs show the RBC dimensions of the B. xanthopterus.

Figure (2): Photographs show the RBC dimensions of the B. sharpeyi.
DISCUSSION

The parameters of Red Blood Cells (RBC count, RBC dimensions, Hb content and PCV value) for the fish, *Barbus xanthopterus*, *Barbus sharpeyi* and *B.xanthopterus X B. sharpeyi* (hybrid of the parents) were mentioned respectively.

The results showed that RBC count for the *Barbus sharpeyi* was greater than those of *Barbus xanthopterus* and their hybrid. While the RBC dimensions (length & width) of *B. xanthopterus* and the hybrid (6 and 4µ) were greater than those of *B.sharpeyi*. These differences could be related to genetic variances. (13) suggested that the erythrocyte size in vertebrates reflected the phylogenetic position of the species, and their number in a unit blood volume increased with a simultaneous decrease in their size.

Hb content of *B. sharpeyi* (5.323 g / 100 ml) was greater than those of *B.xanthopterus* and the, hybrid. They were 5.18 & 4 g /1000 ml respectively. The haemoglobin Content is correlated with the erythrocyte count (4). The PCV value of *B.sharpeyi* (% 100) was greater than those of the other two varieties.
Large size of erythrocyte reflects a physiological acclimatization to habitat in deeper water or soft muddy bottom, as well as its sedentary life style. This confirms the general inverse relationship between erythrocyte size and aerobic swimming ability (14).

The fish inhabits the bottom of muddy stagnant swamps or rice fields and these environments provide good dissolved oxygen supplies during part of year, but when they become stagnant and even dry up at other times, dissolved oxygen becomes low to nonexistent. So in such poor hypoxic conditions, which require relative higher ability of being able to endure hypoxic environment, here the importance of physiological base of high Hb value and RBC value appears (15).

CONCLUSION

Erythrocyte dimensions of the hybrid, *B.xanithopterus X B. sharpeyi* (6 & 4µ) showed a genetic tendency toward the length parameter of *B. sharpeyi*’s RBC, while they showed a genetic tendency toward the width parameter of *B. xanithopterus*. *B. sharpeyi* revealed an increase in number of erythrocyte (3550000) and a decrease in erythrocyte size (5&3 µ). While *B.xanithopterus* showed an increase in erythrocyte size (6&4 µ) and a decrease in erythrocyte number (3450000). The hybrid fish took a position genetically nearer to the *B.xanithopterus*.
(Barbus sharpeyi) (Barbus xanhtopterus) الكطان،

(Barbus sharpeyi X Barbus xanhtopterus) وهجينهما

عبدوالمجيد حميد طلال، جاسم حميد صالح، عامر عبدالله جابر، فالح موسي الزيدي، قسن الفقرياث البحريت، هركز علوم البحار، جاهعت البصرة، البصرة، العراق.

References
8-McCay, C. M. (1930). Phosphorus distribution, sugar and hemoglobin in the blood of fish, eels and turtles. (From the Laboratory of Animal Nutrition, Cornell University, Ithaca).

