On S*-Convergence Nets And Filters

Sabiha I. Mahmood

Al-Mustansiriyah University
College of Science - Department of Mathematics

Abstract: This paper is devoted to introduce and study many topological properties of s*-convergence of nets and s*-convergence of filters by using the concept of s*-open sets, also some properties of s*-cluster points of nets and filters has been studied.

Key words: s*-open, s*-closed, s*-convergent, s*-cluster , s*-limit point and s*-irresolute
1. Introduction

The concept of s^*-closed set was first introduced by Al-Meklafi, S. [1], by using the concept of semi-open set. Recall that a subset A of a topological space (X, τ) is called semi-open (briefly s-open) set if there exists an open subset U of X such that $U \subseteq A \subseteq \text{cl}(U)$. The complement of a semi-open set is defined to be semi-closed (briefly s-closed) [2]. Also, a subset A of a topological space (X, τ) is called s^*-closed if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X [1]. The complement of an s^*-closed set is defined to be s^*-open. The family of all s^*-open (resp. s^*-closed) subsets of (X, τ) is denoted by $S^O(X, \tau)$ (resp. $S^S(X, \tau)$) [1].

Throughout this paper (X, τ) and (Y, τ^*) (or simply X and Y) represent non-empty topological spaces on which no separation axioms are assumed, unless otherwise mentioned.

2. S^*-Convergence Of Nets

2.1. Definition:
A subset A of a topological space X is called an s^*-neighborhood of a point x in X if there exists an s^*-open set U in X such that $x \in U \subseteq A$. The family of all s^*-neighborhoods of a point $x \in X$ is denoted by $N_{s^*}(x)$.

2.2. Remark:
Since every open set is an s^*-open, then every neighborhood of x is an s^*-neighborhood of x, but the converse is not true in general. Consider the following example :-
Example:
Let \(X \) any infinite set with indiscrete topology and \(x \in X \), then \(\{ x \} \) is an \(s^* \)-neighborhood of \(x \), since \(x \in \{ x \} \subseteq \{ x \} \), where \(\{ x \} \) is an \(s^* \)-open set in \(X \), while \(\{ x \} \) is not a neighborhood of \(x \).

2.3. Theorem:
A function \(f : X \to Y \) from a topological space \(X \) to a topological space \(Y \) is \(s^* \)-irresolute iff for each \(x \in X \) and each \(s^* \)-neighborhood \(V \) of \(f(x) \) in \(Y \), there is an \(s^* \)-neighborhood \(U \) of \(x \) in \(X \) such that \(f(U) \subseteq V \).

Proof: \(\Rightarrow \)
Let \(f : X \to Y \) be an \(s^* \)-irresolute function and \(V \) be an \(s^* \)-neighborhood of \(f(x) \) in \(Y \). To prove that, there is an \(s^* \)-neighborhood \(U \) of \(x \) in \(X \) such that \(f(U) \subseteq V \). Since \(f \) is an \(s^* \)-irresolute then, \(f^{-1}(V) \) is an \(s^* \)-neighborhood of \(x \) in \(X \).
Let \(U = f^{-1}(V) \Rightarrow f(U) = f(f^{-1}(V)) \subseteq V \Rightarrow f(U) \subseteq V \).

Conversely,
To prove that \(f : X \to Y \) is \(s^* \)-irresolute. Let \(V \) be an \(s^* \)-open set in \(Y \). To prove that \(f^{-1}(V) \) is an \(s^* \)-open in \(X \). Let \(x \in f^{-1}(V) \Rightarrow f(x) \in V \Rightarrow V \) is an \(s^* \)-neighborhood of \(f(x) \). By hypothesis there is an \(s^* \)-neighborhood \(U_x \) of \(x \) such that \(f(U_x) \subseteq V \).

\[\Rightarrow U_x \subseteq f^{-1}(V), \forall x \in f^{-1}(V) \Rightarrow \exists \text{ an } s^*\text{-open set } W_x \text{ of } x \text{ such that } W_x \subseteq U_x \subseteq f^{-1}(V), \forall x \in f^{-1}(V) \Rightarrow \bigcup_{x \in f^{-1}(V)} W_x \subseteq f^{-1}(V). \]

Since \(f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} \{ x \} \subseteq \bigcup_{x \in f^{-1}(V)} W_x \Rightarrow f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} W_x \).

\[\Rightarrow f^{-1}(V) \text{ is an } s^*\text{-open in } Y, \text{ since its a union of } s^*\text{-open sets}. \]
Thus \(f : X \to Y \) is an \(s^* \)-irresolute function.
2.4. Definition:
Let \((x_d)_{d \in D}\) be a net in a topological space \(X\). Then \((x_d)_{d \in D}\) \(s^*\)-converges to \(x \in X\) (written \(x_d \xrightarrow{s^*} x\)) iff for each \(s^*\)-neighborhood \(U\) of \(x\), there is some \(d_0 \in D\) such that \(d \geq d_0\) implies \(x_d \in U\). Thus \(x_d \xrightarrow{s^*} x\) iff each \(s^*\)-neighborhood of \(x\) contains a tail of \((x_d)_{d \in D}\). This is sometimes said \((x_d)_{d \in D}\) \(s^*\)-converges to \(x\) iff it is eventually in every \(s^*\)-neighborhood of \(x\). The point \(x\) is called an \(s^*\)-limit point of \((x_d)_{d \in D}\).

2.5. Definition:
Let \((x_d)_{d \in D}\) be a net in a topological space \(X\). Then \((x_d)_{d \in D}\) is said to have \(x \in X\) as an \(s^*\)-cluster point (written \(x_d \xrightarrow{\mathcal{A}} x\)) iff for each \(s^*\)-neighborhood \(U\) of \(x\) and for each \(d \in D\), there is some \(d_0 \geq d\) such that \(x_{d_0} \in U\). This is sometimes said \((x_d)_{d \in D}\) has \(x\) as an \(s^*\)-cluster point iff \((x_d)_{d \in D}\) is frequently in every \(s^*\)-neighborhood of \(x\).

2.6. Theorem:
Let \(A\) be a subset of a topological space \(X\). Then \(x \in s^*\text{cl}(A)\) if and only if for any \(s^*\)-open set \(U\) containing \(x\), \(A \cap U \neq \emptyset\).

Proof: \(\Rightarrow\)
Let \(x \in s^*\text{cl}(A)\) and suppose that, there is an \(s^*\)-open set \(U\) in \(X\) such that \(x \in U \& A \cap U = \emptyset \Rightarrow A \subseteq U^c\) which is \(s^*\)-closed in \(X\) \(\Rightarrow s^*\text{cl}(A) \subseteq U^c\).
\(\therefore x \in U \Rightarrow x \notin U^c \Rightarrow x \notin s^*\text{cl}(A)\), this is a contradiction.

Conversely,
Suppose that, for any \(s^*\)-open set \(U\) containing \(x\), \(A \cap U \neq \emptyset\).
To prove that \(x \in s^*\text{cl}(A)\), if not \(\Rightarrow x \notin s^*\text{cl}(A)\)
\[x \in (s^* - cl(A))^c \text{ which is } s^*-\text{open in } X \Rightarrow A \cap (s^* - cl(A))^c \neq \emptyset. \]

This is a contradiction, since \(A \cap (s^* - cl(A))^c = \emptyset \). Thus \(x \in s^* - cl(A) \).

Since every neighborhood is an \(s^* \)-neighborhood, then we have the following theorem:

\subsection*{2.7. Theorem:}
Let \(X \) be a topological space and \((x_d)_{d \in D} \) be a net in \(X \) and \(x \in X \). Then:

\begin{enumerate}[i)]
 \item If \(x_d \overset{s^*}{\to} x \), then \(x_d \not\approx x \).
 \item If \(x_d \overset{s^*}{\to} x \) \((x_d \not\approx x) \), then \(x_d \to x \) \((x_d \not\approx x) \) respectively.
\end{enumerate}

\subsection*{2.8. Remarks:}

1) The converse of (2.7(i)) may not be true in general. To show that we give the following example:

\textbf{Example:} Let \((\mathcal{R}, \mu)\) be the usual topological space where \(\mathcal{R} \) be the set of all real numbers, then the net \((s_n)_{n \in N} = (n + (-1)^n n)_{n \in N} \) in \(\mathcal{R} \) has \(0 \) as an \(s^* \)-cluster point but not \(s^* \)-limit point. Since if \(U \) is an \(s^* \)-neighborhood of \(0 \) in \(\mathcal{R} \), then for each \(n \in N \), either \(n \) is odd or even. If \(n \) is odd, then \(n_0 = n \Rightarrow s_{n_0} = 0 \in U \) and if \(n \) is even, then \(n_0 = n + 1 \Rightarrow s_{n_0} = 0 \in U \), thus \(s_n \not\approx 0 \). But \(s_n \) does not \(s^* \)-converge to \(0 \), since \(U = (-1,1) \) is an \(s^* \)-neighborhood of \(0 \) and \(s_n \not\in (-1,1), \forall n \in N \).

2) The converse of (2.7(ii)) may not be true in general. To show that we give the following example:
Example: Let \((N, I) \) be the indiscrete topological space where \(N \) be the set of all natural numbers and \((s_n)_{n \in N} = (n)_{n \in N} \) be a net in \(N \). Observe that \(s_n \to 1 (s_n \simeq 1) \). But \(s_n \) does not \(s^*-\)converge to 1 (does not \(s^*-\)cluster to 1), since \(\{1\} \) is an \(s^*-\)neighborhood of 1 and \(s_n \notin \{1\}, \forall n > 1 \).

2.9. Theorem:
Let \(X \) be a topological space and \(A \subseteq X \). If \(x \) is a point of \(X \), then \(x \in s^*-cl(A) \) if and only if there exists a net \((x_d)_{d \in D} \) in \(A \) such that \(x_d \xrightarrow{s^*} x \).

Proof: \(\Leftarrow \)
Suppose that \(\exists \) a net \((x_d)_{d \in D} \) in \(A \) such that \(x_d \xrightarrow{s^*} x \). To prove that \(x \in s^*-cl(A) \). Let \(U \in N_{s^*}(x) \), since
\[
x_d \xrightarrow{s^*} x \Rightarrow \exists d_0 \in D \text{ such that } x_d \in U \ \forall d \geq d_0.
\]
But \(x_d \in A \ \forall d \in D. \Rightarrow U \cap A \neq \emptyset \ \forall U \in N_{s^*}(x) \). Hence by (2.6), we get \(x \in s^*-cl(A) \).

Conversely,
Suppose that \(x \in s^*-cl(A) \). To prove that \(\exists \) a net \((x_d)_{d \in D} \) in \(A \) such that \(x_d \xrightarrow{s^*} x \).
\[
\therefore x \in s^*-cl(A) \text{, then by (2.6), we get } N \cap A \neq \emptyset \ \forall N \in N_{s^*}(x).
\]
\[
\therefore D = N_{s^*}(x) \text{ is a directed set by inclusion .}
\]
\[
\therefore N \cap A \neq \emptyset \ \forall N \in N_{s^*}(x) \Rightarrow \exists x_N \in N \cap A.
\]
Define \(x : N_{s^*}(x) \to A \) by : \(x(N) = x_N \ \forall N \in N_{s^*}(x) \).
\[
\therefore (x_N)_{N \in N_{s^*}(x)} \text{ is a net in } A. \text{ To prove that } x_N \xrightarrow{s^*} x.
\]
Let \(N \in N_{s^*}(x) \) to find \(d_0 \in D \) such that \(x_d \in N \ \forall d \geq d_0 \).
Let \(d_0 = N \Rightarrow \forall d \geq d_0 \Rightarrow d = M \in N_{s^*}(x) \).
i.e. \(M \geq N \iff M \subseteq N \).
\[
\therefore x_d = x(d) = x(M) = x_M \in M \cap A \subseteq M \subseteq N \Rightarrow x_M \in N.
\]
\[x_d \in N \ \forall \ d \geq d_0. \] Thus \[x_N \xrightarrow{s^*} x. \]

2.10. Definition: [4]

A topological space \(X \) is called an \(s^*-T_2 \)-space if for any two distinct points \(x \) and \(y \) of \(X \), there are two \(s^* \)-open sets \(U \) and \(V \) such that \(x \in U \), \(y \in V \) and \(U \cap V = \emptyset \).

2.11. Theorem:

A topological space \(X \) is an \(s^*-T_2 \)-space iff every \(s^* \)-convergent net in \(X \) has a unique \(s^* \)-limit point.

Proof: \(\Rightarrow \)

Let \(X \) be an \(s^*-T_2 \)-space and \((x_d)_{d \in D} \) be a net in \(X \) such that \(x_d \xrightarrow{s^*} x \) \& \(x_d \xrightarrow{s^*} y \) \& \(x \neq y \). Since \(X \) is an \(s^*-T_2 \)-space, \(\exists U \in N_{s^*}(x) \) and \(V \in N_{s^*}(y) \) such that \(U \cap V = \emptyset \).

\[x_d \xrightarrow{s^*} x \Rightarrow \exists d_0 \in D \ \ s.t \ \ x_d \in U \ \ \forall \ d \geq d_0. \]

\[x_d \xrightarrow{s^*} y \Rightarrow \exists d_1 \in D \ \ s.t \ \ x_d \in V \ \ \forall \ d \geq d_1. \]

Since \(D \) is a directed set and \(d_0, d_1 \in D \)

\(\Rightarrow \exists d_2 \in D \ \ s.t \ d_2 \geq d_0 \& d_2 \geq d_1. \)

\(\Rightarrow x_d \in U \ \forall \ d \geq d_2 \) and \(x_d \in V \ \forall \ d \geq d_2 \Rightarrow U \cap V \neq \emptyset. \)

This is a contradiction.

Conversely,

Suppose that every \(s^* \)-convergent net in \(X \) has a unique \(s^* \)-limit point. To prove that \(X \) is an \(s^*-T_2 \)-space. Suppose not

\(\Rightarrow \ \exists x, y \in X, x \neq y \ \ s.t \ \ \forall U \in N_{s^*}(x) \ \ \text{and} \ \ \forall V \in N_{s^*}(y), U \cap V \neq \emptyset. \)

\(\Rightarrow (N_{s^*}(x), \subseteq) \) and \((N_{s^*}(y), \subseteq) \) are directed sets by inclusion.

Let \(\rho = N_{s^*}(x) \times N_{s^*}(y) \). Define a relation \(\geq \) on \(\rho \) as follows:

\(\forall (U, V), (W, S) \in \rho, \ \text{we have} \ (U, V) \geq (W, S) \iff U \geq W \& V \geq S. \)

It is easy to verify that \((\rho, \geq)\) is a directed set.

Let \((U, V) \in \rho \Rightarrow x \in U, y \in V \ & U \cap V \neq \emptyset. \)
On S^*-Convergence Nets And Filters Sabiha I. Mahmood

\[\begin{align*}
\therefore U \cap V \neq \emptyset & \Rightarrow \exists x_{(U,V)} \in U \cap V. \\
\text{Define } x : \rho \to X & \text{ by } : x(U,V) = x_{(U,V)} \forall (U,V) \in \rho. \\
\Rightarrow (x(U,V))_{(U,V) \in \rho} & \text{ is a net in } X. \text{ We will show that } (x(U,V))_{(U,V) \in \rho} \text{ is } \\
s^*\text{-convergent to both } x \text{ and } y. \\
\text{For if } U \in N_{s^*}(x) \text{ and } V \in N_{s^*}(y), \text{ then for each } (N,M) \in \rho \text{ s.t } \\
(N,M) \supseteq (U,V), \text{ we have } x(N,M) = x_{(N,M)} \in N \cap M \subseteq U \cap V. \\
\Rightarrow x_{(N,M)} \in U \text{ and } x_{(N,M)} \in V. \\
\Rightarrow x(U,V) \xrightarrow{s^*} x \text{ and } x(U,V) \xrightarrow{s^*} y. \\
\text{This is a contradiction. Thus } (X, \tau) \text{ is an } s^*-T_2\text{-space.}
\end{align*} \]

2.12. Definition:
Let X be a topological space and $A \subseteq X$. A point $x \in X$ is said to be s^*-limit point of A iff every s^*-open set U in X containing x contains a point of A different from x.

2.13. Theorem:
Let X be a topological space and $A \subseteq X$. Then:

1. A point $x \in X$ is an s^*-limit point of A iff there is a net $(x_d)_{d \in D}$ in $A - \{x\}$ s^*-converging to x.
2. A set A is s^*-closed in X iff no net in A s^*-converges to a point in $X - A$.
3. A set A is s^*-open in X iff no net in $X - A$ s^*-converges to a point in A.

Proof:
1) \[\Rightarrow \]
Let x be an s^*-limit point of A. To prove that \exists a net $(x_d)_{d \in D}$ in $A - \{x\}$ such that $x_d \xrightarrow{s^*} x$.

Since x is an s^*-limit point of A \[\Rightarrow \forall N \in N_{s^*}(x) , N \cap A - \{x\} \neq \emptyset. \]

$\therefore (N_{s^*}(x), \subseteq)$ is a directed set by inclusion.
Since \(N \cap A - \{x\} \neq \emptyset \), \(\forall N \in N_{s^*}(x) \Rightarrow \exists x_N \in N \cap A - \{x\} \).

Define \(x : N_{s^*}(x) \to A - \{x\} \) by \(x(N) = x_N \ \forall N \in N_{s^*}(x) \).

\[(x_N)_{N \in N_{s^*}(x)} \] is a net in \(A - \{x\} \). To prove that \(x_N \xrightarrow{s^*} x \).

Let \(N \in N_{s^*}(x) \) to find \(d_0 \in D \) such that \(x_d \in N \ \forall d \geq d_0 \).

Let \(d_0 = N \Rightarrow \forall d \geq d_0 \Rightarrow d = M \in N_{s^*}(x) \).

\(x_d = x(d) = x(M) = x_M \in M \cap A - \{x\} \subseteq M \subseteq N \Rightarrow x_M \in N \).

\(\Rightarrow x_d \in N \ \forall d \geq d_0 \). Thus \(x_N \xrightarrow{s^*} x \).

Conversely,

Suppose that \(\exists \) a net \((x_d)_{d \in D} \) in \(A - \{x\} \) such that \(x_d \xrightarrow{s^*} x \).

To prove that \(x \) is an \(s^* \)-limit point of \(A \). Let \(U \in N_{s^*}(x) \), since \(x_d \xrightarrow{s^*} x \Rightarrow \exists d_0 \in D \) such that \(x_d \in U \ \forall d \geq d_0 \).

But \(x_d \in A - \{x\} \ \forall d \in D \Rightarrow U \cap A - \{x\} \neq \emptyset \ \forall U \in N_{s^*}(x) \).

Thus \(x \) is an \(s^* \)-limit point of \(A \).

2) \(\Rightarrow \)

Let \(A \) be an \(s^* \)-closed in \(X \). To prove that \(\exists \) no net in \(A \) \(s^* \)-converges to a point in \(X - A \).

Suppose not \(\Rightarrow \exists \) a net \((x_d)_{d \in D} \) in \(A \) s.t \(x_d \xrightarrow{s^*} x \) and \(x \in X - A \).

By (2.9) \(x \in s^* - cl(A) \). Since \(A \) is \(s^* \)-closed in \(X \), then \(s^* - cl(A) = A \Rightarrow x \in A \). But \(x \in X - A \Rightarrow (X - A) \cap A \neq \emptyset \),

this is a contradiction.

Thus no net in \(A \) \(s^* \)-converges to a point in \(X - A \).

Conversely,

Suppose that \(\exists \) no net in \(A \) \(s^* \)-converges to a point in \(X - A \).

To prove that \(A \) is \(s^* \)-closed. Let \(x \in s^* - cl(A) \), then by (2.9) \(\exists \) a net \((x_d)_{d \in D} \) in \(A \) such that \(x_d \xrightarrow{s^*} x \). By hypothesis, we get every net in \(A \) \(s^* \)-converges to a point in \(A \).
\[A \in A \Rightarrow s^* - cl(A) \subseteq A. \] Since \(A \subseteq s^* - cl(A) \Rightarrow A = s^* - cl(A) \)

\[\Rightarrow A \text{ is } s^*-\text{closed}. \]

3) By (2) \(A \) is \(s^*\)-open in \(X \) iff \(X - A \) is \(s^*\)-closed in \(X \) iff no net in \(X - A \) \(s^*\)-converges to a point in \(A \).

2.14. Remarks: Let \((x_d)_{d \in D} \) be a net in a topological space \(X \) and \(x \in X \). Then:

1) If \(x_d \xrightarrow{s^*} x \), then every subnet of \((x_d)_{d \in D} \) \(s^*\)-converges to \(x \).

2) If every subnet of \((x_d)_{d \in D} \) has a subnet \(s^*\)-convergent to \(x \),
 then \(x_d \xrightarrow{s^*} x \).

3) If \(x_d = x, \forall d \in D \), then \(x_d \xrightarrow{s^*} x \).

2.15. Theorem:

Let \(X \) and \(Y \) be topological spaces. A function \(f : X \to Y \) is an \(s^*\)-irresolute iff whenever \((x_d)_{d \in D} \) is a net in \(X \) such that \(x_d \xrightarrow{s^*} x \), then \(f(x_d) \xrightarrow{s^*} f(x) \).

Proof: \(\Rightarrow \)

Suppose that \(f : X \to Y \) is an \(s^*\)-irresolute and \((x_d)_{d \in D} \) be a net in \(X \) s.t \(x_d \xrightarrow{s^*} x \). To prove that \(f(x_d) \xrightarrow{s^*} f(x) \).

Let \(V \in N_{s^*}(f(x)) \), since \(f \) is \(s^*\)-irresolute, then by (2.3)

\[\exists U \in N_{s^*}(x) \text{ s.t } f(U) \subseteq V. \] Since \(U \in N_{s^*}(x) \) and \(x_d \xrightarrow{s^*} x \).

\[\Rightarrow \exists d_0 \in D \text{ s.t } x_d \in U, \forall d \geq d_0. \]

\[\Rightarrow \exists d_0 \in D \text{ s.t } f(x_d) \in f(U) \subseteq V, \forall d \geq d_0. \]

\[\therefore \forall V \in N_{s^*}(f(x)), \exists d_0 \in D \text{ s.t } f(x_d) \in V, \forall d \geq d_0. \]

Thus \(f(x_d) \xrightarrow{s^*} f(x) \).
Conversely,

To prove that \(f : X \to Y \) is \(s^\ast \)-irresolute. Suppose not, then by (2.3) \(\exists V \in N_{s^\ast}(f(x)) \) s.t \(U \in N_{s^\ast}(x), f(U) \not\subseteq V \).

\[\forall U \in N_{s^\ast}(x), \exists x_U \in U \text{ s.t } f(x_U) \not\in V. \]

\[(N_{s^\ast}(x), \subseteq) \text{ is a directed set by inclusion.} \]

Define \(x : N_{s^\ast}(x) \to X \) by: \(x(U) = x_U \) \(\forall U \in N_{s^\ast}(x) \).

\[(x_U)_{U \in N_{s^\ast}(x)} \text{ is a net in } X. \]

To prove that \(x_U \xrightarrow{s^\ast} x \).

Let \(U \in N_{s^\ast}(x) \) to find \(d_0 \in D \) such that \(x_d \in U \) \(\forall d \geq d_0 \).

Let \(d_0 = U \Rightarrow \forall d \geq d_0 \Rightarrow d = N \in N_{s^\ast}(x) \).

i.e. \(N \geq U \Leftrightarrow N \subseteq U \).

\[x(N) = x_N \in N \subseteq U \Rightarrow x_N \in U \forall d \geq d_0 \Rightarrow x_U \xrightarrow{s^\ast} x. \]

But \((f(x_U)) \) does not \(s^\ast \)-converges to \(f(x) \), since \(f(x_U) \not\in V \forall U \in N_{s^\ast}(x) \). This is a contradiction. Thus \(f : X \to Y \) is an \(s^\ast \)-irresolute.

2.16. Theorem:

Let \((x_d)_{d \in D} \) be a net in a topological space \(X \) and for each \(d \) in \(D \) let \(A_d \) be the set of all points \(x_{d_0} \) for \(d_0 \geq d \). Then \(x \) is an \(s^\ast \)-cluster point of \((x_d)_{d \in D} \) if and only if \(x \) belongs to the \(s^\ast \)-closure of \(A_d \) for each \(d \) in \(D \).

Proof: \(\Rightarrow \)

If \(x \) is an \(s^\ast \)-cluster point of \((x_d)_{d \in D} \), then for each \(d, A_d \) intersects each \(s^\ast \)-neighborhood of \(x \) because \((x_d)_{d \in D} \) is frequently in each \(s^\ast \)-neighborhood of \(x \). Therefore \(x \) is in the \(s^\ast \)-closure of each \(A_d \).

Conversely,

If \(x \) is not an \(s^\ast \)-cluster point of \((x_d)_{d \in D} \), then there is an \(s^\ast \)-neighborhood \(U \) of \(x \) such that \((x_d)_{d \in D} \) is not frequently in \(U \). Hence for some \(d \) in \(D \), if \(d_0 \geq d \), then \(x_{d_0} \not\in U \), so that \(U \) and \(A_d \)
are disjoint. Consequently x is not in the s*-closure of A_d.

3. S*-Convergence Of Filters

3.1. Definition:
A filter ξ on a topological space X is said to s*-converge to x ∈ X (written ξ \(\xrightarrow{s^*} x\)) iff \(N_{s^*}(x) \subseteq \xi\).

3.2. Definition:
A filter ξ on a topological space X has x ∈ X as an s*-cluster point (written ξ ∝ x) iff each F ∈ ξ meets each N ∈ \(N_{s^*}(x)\).

3.3. Remark:
A filter ξ on a topological space X has x ∈ X as an s*-cluster point iff \(\bigcap\{s^*-cl(F) : F \in \xi\}\).

Proof: To prove that \(\xi \propto x \iff x \in \bigcap\{s^*-cl(F) : F \in \xi\}\).
\[
\begin{align*}
\therefore \xi \propto x & \iff \forall N \in N_{s^*}(x) \land \forall F \in \xi, N \cap F \neq \emptyset \\
& \iff \forall N \in N_{s^*}(x), F \cap N \neq \emptyset, \forall F \in \xi \\
& \iff x \in s^*-cl(F), \forall F \in \xi \\
& \iff x \in \bigcap\{s^*-cl(F) : F \in \xi\}.
\end{align*}
\]

3.4. Theorem:
Let X be a topological space and ξ be a filter on X and x ∈ X. Then :

1) If \(\xi \xrightarrow{s^*} x\), then \(\xi \propto x\).

2) If \(\xi \xrightarrow{s^*} x\), then \(\xi \rightarrow x\).

3) If \(\xi \propto x\), then \(\xi \propto x\).

4) If \(\xi \xrightarrow{s^*} x\), then every filter finer than ξ also s*-converges to x.
Proof: It is an obvious.

3.5. Remark:
The converse of (3.4) may not be true in general. To show that we
give the following examples:

Examples:

1) Let (\mathfrak{R}, μ) be the usual topological space where \mathfrak{R} be the set
of all real numbers and $\xi = \{A \subseteq \mathfrak{R} : [-1,1] \subseteq A\}$ be a filter
on \mathfrak{R}, then $\xi \approx 0$, but ξ does not s^*-converge to 0, since
$(-1,1) \in N_{s^*}(0)$, but $(-1,1) \notin \xi$.

2) Let $X = \{1,2,3\} \& \tau = \{\phi, X, \{1,2\}\}$
$\Rightarrow S^*O(X) = \{\phi, X, \{1\}, \{2\}, \{1,2\}\}$.
Let $\xi = \{X, \{1,2\}\}$ be a filter on X.
$\therefore N(1) = \{X, \{1,2\}\} \Rightarrow N(1) \subseteq \xi \Rightarrow \xi \rightarrow 1$.
$\therefore N_{s^*}(1) = \{X, \{1\}, \{1,2\}, \{1,3\}\} \Rightarrow N_{s^*}(1) \subsetneq \xi$
$\Rightarrow \xi$ is not s^*-converge to 1.

3) Let $X = \{1,2,3\} \& \tau = \{\phi, X\}$
$\Rightarrow S^*O(X) = \{\phi, X, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}\}$.
Let $\xi = \{X, \{1,2\}\}$ be a filter on X.
$\therefore N(3) = \{X\} \Rightarrow \xi \approx 3$.
$\therefore N_{s^*}(3) = \{X, \{3\}, \{2,3\}, \{1,3\}\} \Rightarrow \xi$ is not s^*-cluster to 3, since
$\{3\} \cap \{1,2\} = \phi$.

4) Let $X = \{1,2\} \& \tau = \{\phi, X, \{1\}\}$ $\Rightarrow S^*O(X) = \{\phi, X, \{1\}\}$.
Let $\xi' = \{X, \{1\}\} \& \xi = \{X\}$.
$\therefore N_{s^*}(1) = \{X, \{1\}\} \Rightarrow N_{s^*}(1) \subseteq \xi' \Rightarrow \xi' \xrightarrow{s^*} 1$.
3.6. Definition:
A filter base ξ_0 on a topological space X is said to s^*-converge to $x \in X$ (written $\xi_0 \rightarrow_{s^*} x$) iff the filter generated by ξ_0 s^*-converges to x.

3.7. Definition:
A filter base ξ_0 on a topological space X has $x \in X$ as an s^*-cluster point (written $\xi_0 \sim x$) iff each $F_0 \in \xi_0$ meets each $N \in N_{s^*}(x)$ (iff the filter generated by ξ_0 s^*-clusters at x).

3.8. Theorem:
A filter base ξ_0 on a topological space X s^*-converges to $x \in X$ iff for each $N \in N_{s^*}(x)$, there is $F_0 \in \xi_0$ such that $F_0 \subseteq N$.

Proof: \Rightarrow
Given $\xi_0 \rightarrow_{s^*} x$, then the filter ξ generated by ξ_0 s^*-converges to x. i.e. $\xi \rightarrow_{s^*} x \Rightarrow N_{s^*}(x) \subseteq \xi \Rightarrow \forall N \in N_{s^*}(x), N \in \xi$
$\Rightarrow \exists F_0 \in \xi_0$ s.t $F_0 \subseteq N$.

Conversely,
To prove that $\xi_0 \rightarrow_{s^*} x$ i.e. ξ generated by ξ_0 s^*-converges to x. Let $N \in N_{s^*}(x)$, then by hypothesis, $\exists F_0 \in \xi_0$ s.t $F_0 \subseteq N$, since ξ is a filter, then $N \in \xi \Rightarrow N_{s^*}(x) \subseteq \xi \Rightarrow \xi \rightarrow_{s^*} x$
$\Rightarrow \xi_0 \rightarrow_{s^*} x$.

3.9. Theorem:
A filter ξ on a topological space X has $x \in X$ as an s^*-cluster point iff there is a filter ξ' finer than ξ which s^*-converges to x.

But $\xi \subseteq \xi'$ and ξ is not s^*-converge to 1, since $N_{s^*}(1) \not\subseteq \xi$.
Proof: \(\Rightarrow \)

If \(\xi \propto x \), then by (3.2) each \(F \in \xi \) meets each \(N \in N_{s^*}(x) \).

\[\xi' = \{ N \cap F : N \in N_{s^*}(x), F \in \xi \} \]

is a filter base for some filter \(\xi' \) which is finer than \(\xi \) and \(s^* \)-converges to \(x \).

Conversely,

Given \(\xi \subseteq \xi' \) and \(\xi' \xrightarrow{s^*} x \Rightarrow \xi \subseteq \xi' \) and \(N_{s^*}(x) \subseteq \xi' \).

\[\Rightarrow \text{each } F \in \xi \text{ and each } N \in N_{s^*}(x) \text{ belong to } \xi'. \]

Since \(\xi' \) is a filter \(\Rightarrow N \cap F \neq \phi \Rightarrow \xi \propto x \).

3.10. Theorem:

Let \(X \) be a topological space and \(A \subseteq X \). Then \(x \in s^* - \text{cl}(A) \) iff there is a filter \(\xi \) such that \(A \in \xi \) and \(\xi \xrightarrow{s^*} x \).

Proof: \(\Rightarrow \)

If \(x \in s^* - \text{cl}(A) \Rightarrow U \cap A \neq \phi \ \forall U \in N_{s^*}(x) \).

\[\Rightarrow \xi_0 = \{ U \cap A : U \in N_{s^*}(x) \} \] is a filter base for some filter \(\xi \).

The resulting filter contains \(A \) and \(\xi \xrightarrow{s^*} x \).

Conversely,

If \(A \in \xi \) and \(\xi \xrightarrow{s^*} x \Rightarrow A \in \xi \) and \(N_{s^*}(x) \subseteq \xi \).

Since \(\xi \) is a filter \(\Rightarrow U \cap A \neq \phi \ \forall U \in N_{s^*}(x) \Rightarrow x \in s^* - \text{cl}(A) \).

3.11. Definition[8]:

Let \(X \) and \(Y \) be topological spaces, \(f : X \to Y \) be a function and \(\xi \) be a filter on \(X \), then \(f(\xi) \) is the filter on \(Y \) having for a base the sets \(\{ f(F) : F \in \xi \} \).

3.12. Theorem:

Let \(X \) and \(Y \) be two topological spaces. A function
\(f : X \rightarrow Y \) is an s*-irresolute iff whenever \(\xi \xrightarrow{s^*} x \) in \(X \), then \(f(\xi) \xrightarrow{s^*} f(x) \) in \(Y \).

Proof: \(\implies \)

Suppose that \(f : X \rightarrow Y \) is s*-irresolute and \(\xi \xrightarrow{s^*} x \).

To prove that \(f(\xi) \xrightarrow{s^*} f(x) \) in \(Y \). Let \(V \in N_{s^*}(f(x)) \), since \(f \) is s*-irresolute, then by (2.3), there is an s*-neighborhood \(U \) of \(x \) such that \(f(U) \subseteq V \). Since \(\xi \xrightarrow{s^*} x \), then \(U \in \xi \Rightarrow f(U) \in f(\xi) \).

But \(f(U) \subseteq V \), then \(V \in f(\xi) \). Thus \(f(\xi) \xrightarrow{s^*} f(x) \).

Conversely,

Suppose that whenever \(\xi \xrightarrow{s^*} x \) in \(X \), then \(f(\xi) \xrightarrow{s^*} f(x) \) in \(Y \).

To prove that \(f : X \rightarrow Y \) is s*-irresolute.

Let \(\xi = \{U : U \in N_{s^*}(x)\} \Rightarrow \xi \) is a filter on \(X \) and \(\xi \xrightarrow{s^*} x \).

By hypothesis \(f(\xi) \xrightarrow{s^*} f(x) \Rightarrow \) each \(V \in N_{s^*}(f(x)) \) belongs to \(f(\xi) \)

\(\Rightarrow \exists U \in N_{s^*}(x) \) s.t \(f(U) \subseteq V \Rightarrow f : X \rightarrow Y \) is an s*-irresolute function.

3.13. Theorem:

Let \(X \) be a topological space and \(A \subseteq X \). Then a point \(x \in X \) is an s*-limit point of \(A \) iff \(A - \{x\} \) belongs to some filter which s*-converges to \(x \).

Proof: \(\implies \)

If \(x \) is an s*-limit point of \(A \) \(\Rightarrow U \cap A - \{x\} \neq \emptyset \ \forall U \in N_{s^*}(x) \).

\(\Rightarrow \xi_0 = \{U \cap A - \{x\} : U \in N_{s^*}(x)\} \) is a filter base for some filter \(\xi \).

The resulting filter contains \(A - \{x\} \) and \(\xi \xrightarrow{s^*} x \).
Conversely,
If $A - \{x\} \in \xi$ and $\xi \xrightarrow{s^*} x \Rightarrow A - \{x\} \in \xi$ and $N_{s^*}(x) \subseteq \xi$.
Since ξ is a filter $\Rightarrow U \cap A - \{x\} \neq \emptyset \ \forall U \in N_{s^*}(x)$. Thus x is an s^*-limit point of a set A.

3.14. Definition[8]:
If $(x_d)_{d \in D}$ is a net in a topological space X, the filter generated by the filter base ξ_0 consisting of the sets $B_{d_0} = \{x_d : d \geq d_0\}, d_0 \in D$ is called the filter generated by $(x_d)_{d \in D}$.

3.15. Theorem:
A net $(x_d)_{d \in D}$ in a topological space X s^*-converges to $x \in X$ iff the filter generated by $(x_d)_{d \in D}$ s^*-converges to x.

Proof: The net $(x_d)_{d \in D}$ s^*-converges to x iff each s^*-neighborhood of x contains a tail of $(x_d)_{d \in D}$, since the tails of $(x_d)_{d \in D}$ are a base for the filter generated by $(x_d)_{d \in D}$, the result follows.

3.16. Definition[8]:
If ξ is a filter on a topological space X, let $D_\xi = \{(x, F) : x \in F \in \xi\}$. Then D_ξ is directed by the relation $(x_1, F_1) \leq (x_2, F_2)$ iff $F_2 \subseteq F_1$, so the function $p : D_\xi \rightarrow X$ defined by $p(x, F) = x$ is a net in X. It is called the net based on ξ.

3.17. Theorem:
A filter ξ on a topological space X s^*-converges to $x \in X$ iff the net based on ξ s^*-converges to x.
On S^*-Convergence Nets And Filters Sabiha I. Mahmood Issue No. 30/2012

Proof:
Suppose that $\xi \xrightarrow{s^*} x$. If $N \in N_{s^*}(x)$, then $N \in \xi$. Since $N \neq \emptyset$, then $\exists p \in N$. Let $d_0 = (p, N) \in D_{\xi}$.

Thus the net based on ξ s^*-converges to x.

Conversely, suppose that the net based on ξ s^*-converges to x.

Let $N \in N_{s^*}(x)$, then $\exists d_0 = (p_0, F_0) \in D_{\xi}$ such that

$\forall d = (q, F) \geq d_0 = (p, N) \Rightarrow x_d = x_{(q, F)} = q \in F \subseteq N.$

3.18 Theorem:
A topological space X is an s^*-T_2-space iff every s^*-convergent filter in X has a unique s^*-limit point.

Proof:
Let X be an s^*-T_2-space and ξ be a filter in X such that

$\xi \xrightarrow{s^*} x$ & $\xi \xrightarrow{s^*} y$ & $x \neq y$. Since X is an s^*-T_2-space

$\Rightarrow \exists U \in N_{s^*}(x)$ and $V \in N_{s^*}(y)$ such that $U \cap V = \emptyset$.

$\therefore \xi \xrightarrow{s^*} x \Rightarrow N_{s^*}(x) \subseteq \xi$.

$\therefore \xi \xrightarrow{s^*} y \Rightarrow N_{s^*}(y) \subseteq \xi$.

$\therefore U \in N_{s^*}(x) \subseteq \xi$ & $V \in N_{s^*}(y) \subseteq \xi \Rightarrow U, V \in \xi$.

Since ξ is a filter, then $U \cap V \neq \emptyset$. This is a contradiction. Hence ξ s^*-converges to a unique s^*-limit point.

Conversely,
To prove that X is an s^*-T_2-space. Suppose not, then

$\exists x, y \in X, x \neq y$ s.t $\forall U \in N_{s^*}(x)$ & $\forall V \in N_{s^*}(y)$, $U \cap V \neq \emptyset$.
\[\xi_0 = \{ U \cap V : U \in N_{s^*}(x), V \in N_{s^*}(y) \} \] is a filter base for some filter \(\xi \). The resulting filter \(s^* \)-converges to \(x \) and \(y \).

This is a contradiction. Thus \(X \) is an \(s^*-T_2 \)-space.

References

حوَّل تقارب الشبكات والمرشحات - ُ

صبيحة إبراهيم محمود

الجامعة المستنصرية / كلية العلوم / قسم الرياضيات

المستخلص

كرس هذا البحث لتقديم و دراسة العديد من الخواص التبولوجية لمقاربة
الشبكات من النمط - ُ (convergence of nets) ُ وتقارب المرشحات من
النمط - ُ (convergence of filters) ُ مستخدمين مفهوم المجموعات
المفتوحة من النمط - ُ (open sets) ُ. كذلك درسنا بعض خواص النقاط
العنقودية من النمط - ُ (cluster points) ُ للشبكات والمرشحات.