RIGHT \((σ,τ)\)-DERIVATIONS ON LEFT IDEALS

Asawer D. Hamdi
asawerdurai@yahoo.com
Department of Mathematics, College of Science, University Of Baghdad. Baghdad-Iraq

Abstract

Let \(R \) be a prime ring and \(I \) a nonzero left ideal of \(R \) which is a semi prime as a ring.
For a right \((σ,τ)\)-derivations \(δ: R \to R \), we prove the following results:
(1) If \(δ \) acts as a homomorphism on \(I \), then \(δ = 0 \) on \(R \).
(2) If \(δ \) acts as an anti-homomorphism on \(I \), then either \(δ = 0 \) on \(R \) or \(I \subseteq Z(R) \).

Keywords: derivation, right derivation, \((σ,τ)\)-derivation, right \((σ,τ)\)-derivation

1. Introduction:
Throughout the present paper \(R \) will be denote an associative ring with center \(Z(R) \). Recall that \(R \) is prime if \(aRb=\{0\} \) implies that either \(a=0 \) or \(b=0 \). Let \(x, y \in R \), the commutator \([x,y]\) will denoted \(xy-yx \). An additive mapping \(d: R \to R \) is called a derivation (resp., Jordan derivation) on \(R \) if \(d(xy)=d(x)y+xd(y) \) (resp., \(d(x^2)=d(x)x+xd(x) \)) holds, for all \(x, y \in R \). Let \(σ,τ \) are two mappings of \(R \). An additive mapping \(d: R \to R \) is called a \((σ,τ)\)-derivation (resp., Jordan \((σ,τ)\)-derivation) on \(R \) if \(d(xy)=d(x)σ(y)+τ(x)d(y) \) (resp., \(d(x^2)=d(x)σ(x)+τ(x)d(x) \)) holds, for all \(x, y \in R \). Clearly every \((I,I)\)-derivation (resp., Jordan \((I,I)\)-derivation), where \(I \) is the identity mapping on \(R \) is derivation (resp., Jordan derivation) on \(R \). An additive mapping \(δ: R \to R \) is called a left derivation (resp., Jordan left derivation) if \(δ(xy)=x δ(y)+y δ(x) \) (resp., \(δ(x^2)=2xδ(x) \)) holds, for all \(x, y \in R \). In view of the definition of a \((σ,τ)\)-derivation the notion of left \((σ,τ)\)-derivation can be extended as follows:
An additive mapping \(δ: R \to R \) is called a left \((σ,τ)\)-derivation (resp., Jordan left \((σ,τ)\)-derivation) on \(R \) if \(δ(xy)=δ(x)σ(y)+τ(x)δ(y) \) (resp., \(δ(x^2)=σ(x)δ(x)+τ(x)δ(x) \)) holds, for all \(x, y \in R \). Clearly every left \((I,I)\)-derivation (resp., Jordan left \((I,I)\)-derivation) is a left derivation (resp., Jordan left derivation) on \(R \). An additive mapping \(δ: R \to R \) is called a right derivation (resp., Jordan right derivation) on \(R \) if \(δ(xy)=δ(y)x+δ(x)y \) (resp., \(δ(x^2)=2δ(x)x \)) holds, for all \(x, y \in R \).
An additive mapping \(δ: R \to R \) is called a right \((σ,τ)\)-derivation (resp., Jordan right \((σ,τ)\)-derivation) on \(R \) if \(δ(xy)=δ(y)σ(x)+δ(x)τ(y) \)
(resp., $\delta(x^2) = \delta(x)\sigma(x) + \delta(x)\tau(x)$) holds, for all $x, y \in R$. Clearly, every right $(1, 1)$-derivation (resp., Jordan right $(1, 1)$-derivation) on R is a right derivation (resp., Jordan right derivation) on R.

Bell and Kappe [1] proved that if d is a derivation of a prime ring R which acts as a homomorphism or as an anti-homomorphism on a nonzero right ideal I of R, then $d=0$ on R. Further, Yenigul and Arac [2] obtained the above result for α-derivation in prime rings. Recently, Ashraf, et al. [3] extended the result for (σ, τ)-derivation in prime and semiprime rings. Also in [4] Ô.Glibasi and N. Aydin proved that if d is a (σ, τ)-derivation which acts homomorphism or as an anti-homomorphism on a prime ring R, then $d=0$ on R. In [5] Majeed and Hamdi Asawer extended the above results for (σ, τ)-derivation which acts as a homomorphism or as an anti-homomorphism on a nonzero Jordan ideal and a subring J of a 2-torsion-free prime ring R, then they generalized the above extension for generalized (σ, σ)-derivation. Also they proved that if $d: R \to R$ is a (σ, τ)-derivation which acts as a homomorphism on a nonzero Jordan ideal and a subring J of a 2-torsion-free prime ring R, then either $d=0$ on R or $J \subseteq Z(R)$.

In [6] Zaidi, et al. proved that if R is a 2-torsion-free prime ring, J a nonzero Jordan ideal and a subring of R and d is a left (σ, σ)-derivation of R, which acts as a homomorphism or as an anti-homomorphism on R, then $d=0$ on R. Hamdi Asawer in [7] extended this result to a left (σ, τ)-derivation which acts as a homomorphism or as an anti-homomorphism on a nonzero Jordan ideal and a subring J of R.

As for more details and fundamental results used in this paper without mention we refer to [1,3,4,8,9,10,12]. The aim in this paper is to extend the above results and the theorem of Ô.Glibasi and N. Aydin [4] which state that if d is a nonzero (σ, τ)-derivation which acts as a homomorphism or as an anti-homomorphism on a nonzero left ideal I of prime ring R which is a semiprime as a ring, then $d=0$ on R to a right (σ, τ)-derivation on R which acts as a homomorphism or as an anti-homomorphism on a nonzero left ideal I of prime ring R which is a semiprime as a ring, then either $\delta=0$ on R or $I \subseteq Z(R)$.

2. Right (σ, τ)-derivation as a homomorphism or as an anti-homomorphism:

Let R be a ring and d is a derivation of R. If $d(xy)=d(x)d(y)$ (resp., $d(xy)=d(y)d(x)$) holds, for all $x, y \in R$, then we say that d acts as a homomorphism (resp., anti-homomorphism) on R.

To prove the main result the following lemma is needed.

Lemma (2.1):

Let R be a prime ring, I a nonzero left ideal of R which is semiprime as a ring. If $Ia=0$ ($aI=0$), for $a \in R$, then $a=0$.

We are now well-equipped to prove the main theorem:

Theorem (2.2):

Let R be a prime ring, I a nonzero left ideal of R which is a semiprime as a ring. Suppose σ, τ are automorphisms of R and $\delta: R \to R$ is a right (σ, τ)-derivation of R. Then the following are holds:

(i) If δ acts as a homomorphism on I, then $\delta=0$ on R.

(ii) If δ acts as an anti-homomorphism on I, then either $\delta=0$ on R or $I \subseteq Z(R)$.

Proof:

(i) If δ acts as a homomorphism on I, then we have $\delta(uv)=\delta(v)\sigma(u)+\delta(u)\tau(v)$, for all $u, v \in I$.

(2.1) Replacing u by ut, $t \in I$ in (2.1), we get

$\delta(v)\sigma(ut)+\delta(ut)\tau(v)=\delta(ut)\delta(v)$

Since δ is a homomorphism on R and σ, τ are automorphisms of R, we have

$\delta(u)\delta(v)=\delta(u)[\delta(v)\sigma(t)+\delta(t)v]$, for all $u, v, t \in I$.

Or equivalently

$\delta(v)\sigma(ut)=\delta(ut)\delta(v)$, for all $u, v, t \in I$ (2.2)

This implies that $[\delta(v)\sigma(u)-\delta(u)\delta(v)]\sigma(t)=0$, for all $u, v, t \in I$.

Hence $\sigma^{-1}([\delta(v)\sigma(u)-\delta(u)\delta(v)])I=\{0\}$, for all $u, v \in I$ and then we have $\sigma^{-1}([\delta(v)\sigma(u)-\delta(u)\delta(v)])RI=\{0\}$, for all $u, v \in I$, since R is a prime ring and I is a nonzero left ideal of R, we have $\delta(u)\sigma(u)-\delta(u)\delta(v)=0$, for all $u, v \in I$, since δ is a homomorphism on R, we get

$0=\delta(v)\sigma(u)-\delta(u)v$

$=\delta(v)\sigma(u)-\delta(v)\sigma(u)-\delta(u)\tau(v)$
\[\delta(u)v = -\delta(u)\tau(v), \quad \text{for all } u,v \in I. \]

This implies that \(\delta(u)v = 0 \), for all \(u,v \in I \). Replacing \(v \) by \(rv \), \(r \in R \), we get
\[0 = \delta(u)(rv) = \delta(u)\tau(r)\tau(v), \quad \text{for all } u,v \in I, r \in R. \]
Since \(R \) is a prime ring and \(I \) is a nonzero left ideal of \(R \), we have \(\delta(u) = 0 \), for all \(u \in I \). Now, replacing \(u \) by \(ru \), \(r \in R \), we find
\[0 = \delta(ru) \]
\[= \delta(u)\sigma(r) + \delta(r)\tau(u) = \delta(r)\tau(u), \quad \text{for all } u \in I, r \in R. \]
Since \(R \) is a prime ring, \(I \) a nonzero left ideal of \(R \) and \(\tau \) is an automorphism of \(R \), we have \(\delta = 0 \) on \(R \).

(ii) If \(\delta \) acts as an anti-homomorphism on \(I \), then we have \(\delta(uv) = \delta(v)\sigma(u) + \delta(u)\tau(v) = \delta(v)\delta(u) \), for all \(u,v \in I \).

Replacing \(u \) by \(uv \) in (2.3), we get
\[\delta(v)\sigma(uv) + \delta(uv)\tau(v) = \delta(v)\delta(uv) \quad \text{for all } u,v \in I. \]

Since \(\delta \) is a homomorphism on \(R \) and \(\sigma, \tau \) are automorphisms of \(R \), we have\(\delta(v)\sigma(u)\sigma(v) + \delta(v)\delta(u)\tau(v) = \delta(v)\delta(u)\tau(v), \quad \text{for all } u,v \in I. \)

This implies that \(\delta(v)\sigma(u)\sigma(v) = \delta(v)\delta(u)\tau(v), \quad \text{for all } u,v \in I. \)

Replacing \(u \) by \(ut \), \(t \in I \) in (2.4), we get
\[\delta(v)\sigma(u)\sigma(t)(v) = \delta(v)\delta(u)\sigma(t), \quad \text{for all } u,v,t \in I. \]

In view of (2.4), the relation (2.5) yields that
\[\delta(v)\sigma(u)\sigma(t)(v) = \delta(v)\delta(u)\sigma(t), \quad \text{for all } u,v,t \in I, \]
this implies that \(\delta(v)\sigma(u)\sigma(t) = \delta(v)\delta(u) \), for all \(uv,t \in I \) and hence \(\sigma^{-1}(\delta(v))I \{ v,t \} = \{ 0 \}, \quad \text{for all } v,t \in I. \)

Since \(R \) is a prime ring, we have either \(\delta(v) = 0 \) or \(I \{ v,t \} = \{ 0 \}, \quad \text{for all } v,t \in I. \)

If \(\delta(v) = 0 \), for all \(v \in I \), replacing \(v \) by \(rv \), where \(r \in R \), to get \(\delta(rv) = \delta(v)\tau(r) + \delta(r)\tau(v) \), this implies that \(\delta(r)\tau(v) = 0 \), for all \(v \in I, r \in R. \)

Since \(R \) is a prime ring, \(I \) a nonzero ideal of \(R \) and \(\tau \) is an automorphism of \(R \), we have \(\delta = 0 \) on \(R. \)

If \(I \{ v,t \} = \{ 0 \} \) thus by Lemma (2.1), we find that \(I \{ v,t \} = \{ 0 \}, \quad \text{for all } v,t \in I. \)

Now, replacing \(v \) by \(rv \), where \(v \in I \) and \(r \in R \), we get
\[0 = [rv,t] \]
\[= r[v,t] + [r,t]v \]
\[= [r,t]v, \quad \text{for all } v,t \in I \text{ and } r \in R \text{ and hence we have } [R,I] = \{ 0 \}. \]

Since \(R \) is a prime ring, \(I \) a nonzero left ideal of \(R \), we have \([R,I] = \{ 0 \} \), therefore we have \(I \subseteq Z(R). \)

References

10. Ashraf M. 2005. On left \((\theta,\theta) - \) derivations of prime rings, \textit{Archivum Mathematicum (Brno), Tomus}, \textbf{41}:157-166.

