Abstract- This work concerned with implementing packet filtering firewall by using Mikrotik Router OS, and tested on a LAN. In the host machine, the programs VMware workstation and Wireshark were installed. Mikrotik Router OS give the same results of real environment. This work aims to drop unwanted packets according to rules defined to Mikrotik Router OS including source address, destination address, source & destination port and specified action written in command line window.

Keywords: IMPLEMENTATION , FIREWALL , MIKROTIK ROUTER OS

Introduction
The increasing complexity of networks, and the need to make them more open due to the growing emphasis on and attractiveness of the internet as a medium for business transactions, mean that networks are becoming more and more exposed to attacks. Once attached to the internet, in addition to taking advantage of its many benefits without risks, the ‘connected organization’ needs to protect it from attack. The search is on for mechanisms and techniques for the protection of internal networks from such attacks. One of the protective mechanisms under serious consideration is the firewall. A firewall protects a network by guarding the points of entry to it. Firewalls are becoming more sophisticated by the day, and new features are constantly being added.

The firewall selectively controls the flow of data to and from network. Packet filters allow or block packets, usually while routing from one network to another (most often from the Internet to an internal network, and vice versa). To accomplish packet filtering, a set of rules must set up, that specify what types of packets e.g., those to or from a particular IP address or port are be allowed, other types are be blocked. Packet filtering may occur in a router, in a bridge, or on an individual host. It is sometimes known as screening [1]. The fundamental function of a firewall is to restrict the flow of information between two networks. To set a firewall, the administrator should define what kinds of data pass and what kinds are blocked. This is called defining of the firewall's policy. The policy instruct the firewall as to how it should control the traffic that traverse between internal trusted networks and external untrusted and unknown networks . Two default policies are possible, the first is default forward (allow list): which include the rules to allow authorized users to freely pass through the firewall. In other words, that which is not expressly prohibited is permitted. And the second is default discard (disallow list): which include the rules to keep unauthorized users from gaining access to an internal network. In other words, that which is not expressly permitted is prohibited [2, 3].

System Design
The mechanism used is Packet filtering, as shown in figure 1 the implemented system depends on the header attributes which is the interest for packet filtering (i.e. the filtering operation depends on checking of these header attributes).
The main processes done by the system described flowchart shown in figure 2; the system will be described in general.

Figure 2. System Flowchart

SYSTEM IMPLEMENTATION

The system tested to filter packets on three types of protocols which are:

1. ICMP scenario (reply echo message)

 The packet has been built with determining IP packet, source address and destination address, and then the rule chain was built with in Mikrotik Router through IP firewall filter add command chain based on forward packet with src-add, des-add, protocol=icmp, and action=drop, as shown in Figure 3, Figure 4 describes the dropping of an ICMP packet, then a rule has been built to accept the packet >ip firewall filter add chain: forward src-address=192.168.0.6 des-address =192.168.1.13 protocol =icmp action=accept as shown in Figure 5, Figure 6 describes the accepting of an ICMP packet.

Figure 3. Defining ICMP rule with drop action

Figure 4. Describes the dropping of an ICMP packet

Figure 5. Defining ICMP rule with accepted action
Figure 6. Accepting an ICMP packet

Telnet as a port of TCP protocol.

The telnet is enabled on the 192.168.0.6 (virtual pc), the rule is built to drop remote access from 192.168.1.13, src-port number=23 as shown in figure 7.

```
> ip firewall filter add chain src=192.168.0.6 des=192.168.1.13 protocol=tcp des-port=23 action=drop
```

Then from 192.168.1.13 (real pc) telnet to 192.168.0.6 (virtual pc) is not allowed as shown in figure 8.

Figure 7. Defining TCP rule for drop telnet access

Figure 8. Describes the Fail connection on telnet port

Then a new rule is built to accept login remotely into pc1 (virtual pc) via telnet service as shown in figure 9.

```
> ip firewall filter add chain src=192.168.0.6 des=192.168.1.13 protocol=tcp des-port=23 action=accept
```

Figure 9. Defining rule for accept TCP connection on telnet port

And pc2 (192.168.1.13) could login remotely into pc1 (192.168.0.6) according to the obvious rule, there are the steps of accept login as shown in figures 10 and 11.

Figure 10. Examine rule by telnet IP address

Figure 11. Examine rule by telnet IP address
Tested the firewall on a specified UDP packet.

First rule chain is built and defined to MIKROTIK ROUTER to drop the packet as shown in figure 12.

```
>ip firewall filter add chain src=192.168.0.6 des=192.168.1.13 src-port=1025 des-port=69 action drop
```

Then the packet sent through Wireshark whose capture any packet coming to 192.168.1.13, the packet is blocked as shown in figure 13.

```
admin@MikroTik> ip firewall filter print
0 chain:forward src-address=192.168.0.6 dst-address=192.168.1.13
protocol=udp src-port=1025 des-port=69 action=drop
1 chain:forward src-address=192.168.3.6 dst-address=192.168.1.13 protocol=udp src-port=65 action=accept
2 chain:forward src-address=192.168.1.3 dst-address=192.168.0.6 protocol=udp src-port=23 action=accept
3 chain:forward src-address=192.168.0.6 dst-address=192.168.1.13
protocol=udp src-port=65 action=accept
4 chain:forward src-address=192.168.3.6 dst-address=192.168.1.13
protocol=udp src-port=1025 des-port=69 action=drop
```

Figure 12. Defining UDP rule with drop action

Figure 13. Shows that Wireshark couldn’t capture UDP packet

Then a new rule is built to accept the packet as shown in figure 14.

```
>ip firewall filter add chain src=192.168.0.6 des=192.168.1.13 src-port=1025 des-port=23 action accept
```

Wireshark monitor and accepting packet is captured as shown in figure 15.
Figure 15. Shows Wireshark capture accepted UDP packet

Conclusions
In this paper I conclude that this design provided a relatively low cost, high reliability solution, since the fastest and the cheapest one of firewall techniques is packet filtering and since MIKROTIK ROUTER OS gave the same results of real environment.
I suggest implementing the firewall system using another type of its technologies as a future work.

References

MIKROTIK OS تنفيذ نظام الجدار النارى باستخدام جهاز التوجيه

شيماء وليد عبد اللطيف
E.mail: mortadha61@yahoo.com

الخلاصة:
هذا العمل يهدف إلى تنفيذ حماية تصغيرة الحزم باستخدام جهاز التوجيه MIKROTIK OS، و اختبارها على شبكة منطقة محلية. في الجهاز المضيف، تم تثبيت البرامج VMware workstation و Wireshark. ويهدف هذا العمل إلى إسقاط الحزم غير المرغوب فيها وفقًا لقواعد محددة في جهاز التوجيه MIKROTIK OS، بما في ذلك عنوان المصدر وعنوان الوجهة. وتنفيذ المصدر والوجهة وإجراءات محددة في نافذة كتابة سطر الأوامر.