Measurement of radon gas concentration in cement samples by using nuclear track detector (CR-39)

M.S.Karim*, Muhammad Hameed Abdullah **, Widad Henou Abass ***

Abstract

In the present work, we have measured the radon gas concentration in ten cement samples from different countries, they are, (Iraq, Egypt, Iran, Lebanon, Turkey and Jordan) by using alpha-emitters registrations which are emitted from radon gas in (CR-39) nuclear track detector.

The results obtained have shown that the highest average radon gas concentration in cement samples which was (200 Bq/m³) origin Iran, while the lowest average radon gas concentration in cement samples which was (84.4 Bq/m³) origin Iraq (Najif). The present results show that the radon gas concentration in all cements samples is below the allowed limit from (International Commission of Radiation Protection) (ICRP) agency.

Keywords: Radon gas concentration, Cement, Alpha-emitters.
Measurement of radon gas concentration in cement samples

by using nuclear track detector (CR-39)

M.S. Karim, Muhammad Hameed Abdullah, Widad Henou Abass

CR-39

Introduction

Radon, as a natural noble gas, has three main natural isotopes; namely, radon-222 (222Rn), a decay product of (238U), radon-220 (220Rn, known as thoron), produced in the decay series of thorium-232 (232Th), and radon-219 (219Rn), a decay product from the chain originating with 235U [1]. Both (238U) and (232Th) occur naturally in soil and rocks at variable concentrations of about (1 pCi/g) and also (226Ra), the parent of (222Rn) [2]. The (222Rn) isotope has a half-life of 3.82 days; while (220Rn) isotope has a half-life of (55) seconds and (219Rn) isotope has a half-life of about (3.9) seconds. (222Rn) decays into polonium-218 (218Po), which in turn decays within minutes to lead-214 (214Pb), bismuth-214 (214Bi), and polonium-214 (214Po) [3].

The radon gas can diffuse easily out of the soil surface into air or houses; it can be trapped in poorly ventilated houses and so its concentration can build up to higher levels. Although soil is considered to be the main source of indoor radon concentration, raw building materials (especially cement, quartz, etc.) can make a significant contribution to the level of natural radioactivity in closed spaces such as stores and badly-ventilated dwellings [4]. Moreover, the...
Measurement of radon gas concentration in cement samples by using nuclear track detector (CR-39)

M.S.Karim, Muhammad Hameed Abdullah, Widad Henou Abass

Production rate of radon in dwellings depends on the concentration of radium content in the subsoil, building materials (as the cement) [5,6]. The emission of radon from building materials is found to be a function of ventilation as well as of the radium content in building materials. The nongaseous (222Rn) decay products are partially suspended in air as a mixture of attached and unattached fractions and partially deposited on walls and furniture [7].

The aim of the present work is to determine the radon gas concentration in different kinds of cement which was available in the local market, some of them were Iraqi made and the others from different countries by using alpha-emitters registrations which are emitted from radon gas in (CR-39) track nuclear detector.

Experimental Part

The determination of the concentrations of alpha particles emitted from radon gas in cement samples were performed by using the nuclear track detector (CR-39) of thickness (250 μm) and area of about (1×1 cm²).

The radon gas concentration in cement samples was obtained by using the sealed-cup technique as shown in Fig. (1).

After the irradiation time (45 day), the (CR-39) track detectors were etched in (6.25 N), (NaOH) at temperature of (70 ℃) for (5 h), and the tracks density were recorded using an optical microscope with magnification (400 x). The density of the tracks (ρ) in the samples were calculated according to the following relation [8].

The radon gas concentration in the cement samples were obtained by the comparison between

\[
\text{Track density (ρ)} = \frac{\text{Average number of total pits (tracks)}}{\text{Area of field view}} \quad (1)
\]

Area of field view

Track densities registered on the detectors of the sample and that of the standard cement samples which are shown in Fig. (2), using the relation [9]:

\[
C_X = ρ_X \cdot (C_S / ρ_S) \quad (2)
\]

Where :

\(C_X\) : alpha particles concentration in the unknown sample.

\(C_S\) : alpha particles concentration in the standard sample.
Measurement of radon gas concentration in cement samples
by using nuclear track detector (CR-39)

M.S. Karim, Muhammad Hameed Abdullah, Widad Henou Abass

\(\rho_x \) : track density of the unknown sample (track/mm\(^2\)).

\(\rho_s \) : track density of the standard sample (track/mm\(^2\)).

Results and Discussion

Our present investigation is based on the study of (10) samples from different kinds of cement which was available in the local market, some of them were Iraqi made and the others from different countries like, (Iraq, Egypt, Iran, Lebanon, Turkey and Jordan) and found the radon gas concentration by using alpha-emitters registrations which are emitted from radon gas in (CR-39) nuclear track detector.

Table (1) present radon gas concentration for cement samples in different countries, we can show that, the highest average radon gas concentration in cement samples which was (200 Bq/m\(^3\)) origin Iran, while the lowest average radon gas concentration in cement samples which was (84.4 Bq/m\(^3\)) origin Iraq (Najif).

The present results show that the radon gas concentration in all cements samples is below the allowed limit from (International Commission of Radiation Protection) (ICRP) agency which is (200 Bq/m\(^3\)) in soil sample [10].

It might be mentioned that, thoron gas is an alpha emitter which is also present in cement environments, however, the average diffusion distance of thoron gas is very small compared to that of radon, which means that the present results might also contained a small amount of thoron, and therefore might be considered roughly as an upper limit results which are still within the allowed limit of (ICRP) agency. Also it should be remembered that the half–lives of radon and thoron are (3.82 d) and (56 s) respectively. However, the present result might be more refined be using, for example, a filter to separate radon gas from thoron gas [11].
Measurement of radon gas concentration in cement samples

by using nuclear track detector (CR-39)

M.S.Karim, Muhammad Hameed Abdullah, Widad Henou Abass

Conclusions

From the present work, it can be concluded that the highest average radon gas concentration in cement samples which was (200 Bq/m³) origin Iran, while the lowest average radon gas concentration in cement samples which was (84.4 Bq/m³) origin Iraq (Najif). The present results show that the radon gas concentration in all cements samples is below the allowed limit from (International Commission of Radiation Protection) (ICRP) agency.

References

Measurement of radon gas concentration in cement samples
by using nuclear track detector (CR-39)

M.S.Karim, Muhammad Hameed Abdullah, Widad Henou Abass

Table (1) show the radon gas concentration for cement samples from different countries.

<table>
<thead>
<tr>
<th>No. of sample</th>
<th>Origin</th>
<th>Samples</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>Iraq (Kirkuk)</td>
<td>Radon Concentration (Bq/m³)</td>
<td>151.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Track density (Track .mm⁻²)</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>Iraq (Kabisa)</td>
<td>Radon Concentration (Bq/m³)</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Track density (Track .mm⁻²)</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>Iraq (AL-Qaim)</td>
<td>Radon Concentration (Bq/m³)</td>
<td>172.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Track density (Track .mm⁻²)</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>Iraq (Sulaymniya)</td>
<td>Radon Concentration (Bq/m³)</td>
<td>186.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Track density (Track .mm⁻²)</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>Iraq (Najif)</td>
<td>Radon Concentration (Bq/m³)</td>
<td>117.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Track density (Track .mm⁻²)</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>Iran</td>
<td>Radon Concentration (Bq/m³)</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Track density (Track .mm⁻²)</td>
<td>38</td>
</tr>
</tbody>
</table>
Measurement of radon gas concentration in cement samples

by using nuclear track detector (CR-39)

M.S. Karim, Muhammad Hameed Abdullah, Widad Henou Abass

<table>
<thead>
<tr>
<th></th>
<th>Lebanon</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Radon Concentration (Bq/m³)</td>
<td>220.6</td>
<td>186.2</td>
<td>138</td>
<td>103.4</td>
</tr>
<tr>
<td></td>
<td>Track density (Track/mm²)</td>
<td>32</td>
<td>27</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>Egypt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radon Concentration (Bq/m³)</td>
<td>241.3</td>
<td>151.7</td>
<td>124.1</td>
<td>117.2</td>
</tr>
<tr>
<td></td>
<td>Track density (Track/mm²)</td>
<td>35</td>
<td>22</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>Turkyi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radon Concentration (Bq/m³)</td>
<td>172.4</td>
<td>151.7</td>
<td>110.3</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Track density (Track/mm²)</td>
<td>25</td>
<td>22</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>Jordan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radon Concentration (Bq/m³)</td>
<td>227.5</td>
<td>200</td>
<td>165.5</td>
<td>117.2</td>
</tr>
<tr>
<td></td>
<td>Track density (Track/mm²)</td>
<td>33</td>
<td>29</td>
<td>24</td>
<td>17</td>
</tr>
</tbody>
</table>

Fig. (1) A schematic diagram of the sealed-cup technique in cement sample.
Measurement of radon gas concentration in cement samples

by using nuclear track detector (CR-39)

M.S.Karim, Muhammad Hameed Abdullah, Widad Henou Abass

Slope = \(\frac{\rho_s}{C_s} = 0.145 \text{ (track.m}^3/\text{mm}^2\text{.Bq)} \)

Radon gas concentration (Bq/m\(^3\))

Fig.(2) relation of radon gas concentration and track density in standard samples.