A Review of the Water Quality of the Mesopotamian (Southern Iraq) Marshes Prior to the Massive Desiccation of the Early 1990s

N.A. Hussaina and S.A. Grabeb*

aDepartment of Biology, College of Science, Basrah University, Basra, Iraq
b11348 80th Avenue North, Seminole, FL 33772 USA
*Author for correspondence: dr_najah_h@yahoo.com

Abstract
The marshes of southern Iraq range from in size from 8,000 to 30,000 km2. Delivery of freshwater to this system has been affected by the construction of water control structures both within Iraq and in neighboring countries. In the early 1990s, the Government of Iraq drained a large portion of this system and burned extensive stands of \textit{Phragmites}. Less than 10\% of these marshes were functioning normally by 2000 (Partow 2001, Brasington 2002).

This review summarizes the existing data on water quality of this vast and unique ecosystem prior to the Iraqi government’s decision to drain these marshes. These data come from numerous graduate theses and other investigations not readily accessible by the scientific community. Water quality variables considered included salinity, ionic composition, and a number of variables related to nutrient status.

These data show that salinity has increased over time, adversely affecting agriculture in southern Iraq. Dissolved oxygen concentrations have generally been high, waters are typically slightly alkaline, and extensive submerged aquatic vegetation facilitates the settling of suspended solids. Nitrates are the predominant form of inorganic nitrogen, and the concentrations were low compared to other water bodies in Iraq. Nutrient limitation experiments indicated that the phytoplankton were nitrogen limited.

Key words: water quality; Iraq; Mesopotamia; marshes; salinity; nutrients; anions; cations

1- Introduction
The southern Iraqi marshes occupy the south and southeastern parts of the Mesopotamian Valley (32.7557° N,
The climate of the area has long hot summers and short, rather cold winters; the prevailing north-westerly winds have a pronounced influence on the area (Yuaqub and Salman 1992). These marshes are the most important geographical unit in southern Mesopotamia and form a complex lacustrine sedimentary environment (Yuaqub and Seikian 1992). The areal extents of this marsh system were not fixed. These wetlands have ranged from 8,000 to 30,000 km2, making them the largest wetland system in the region (Maltby 1994, Partow 2001, Nicholson and Clark 2002). Sources of water for this marsh system include several rivers, precipitation, and groundwater. Flow from the Tigris and Euphrates rivers almost wholly regulate the area of the marshes since local rainfall averages <100-mm year$^{-1}$ (Yuaqub and Salman 1992).

Regulation of flows from the Tigris and Euphrates by Turkey, Iran, and Syria, primarily for agriculture, has contributed to the reduction of these wetlands. Additionally, within Iraq, construction of impoundments, increased irrigation for agriculture as well as the draining of wetlands for agriculture, has also affected the quantity and timing of water delivery to these wetlands (IUCN 2005). During the Iran-Iraq War of the 1980s, the marshes were often the scene of intense fighting, which facilitated their destruction. Then, in the early 1990s, the Government of Iraq constructed a large network of water control structures, drained an extremely large portion of the marsh system, and burned extensive stands of Phragmites. The consequence of all these modifications to the system, particularly those of the Hussain regime beginning in the early 1990s, was that <10% of these marshes were functioning as they should be by 2000 (Partow 2001; Brasington 2002).

The remaining wetlands include both permanent and seasonal marsh systems. The permanent marshes include expanses of open water (“burkahs”) and channels used for both transportation and fishing (Al-Kayat 1975). The Al-Kharka River contributes a limited amount of freshwater flow to the Al-Huwayza marsh. The Tigris River contributes the greatest volume of water to the marshes near the city of Amarra and Qurna (Figure 1), whereas the Euphrates feeds the Al-Hammar marsh. The Shatt Al-Arab River also contributes water to the eastern part of the Al-Hammar marsh.

These marshes once served as a natural filter for suspended particles and pollutants translocated by the Tigris and Euphrates rivers. This filtering process diminished sedimentation and pollutant loadings to the coastal marine environment of the Gulf (Maltby 1994, Saeed et al. 1999, Partow 2001; Al-Yammani et al. 2007).

Central to the function of the marshes are the role of vegetation. Emergent vegetation, including dense stands of Phragmites australis, Typha domingensis, and Schoenoplectus litoralis (Al-Mayah
1978; Al-Mayah 2005; IUCN 2005) are refuges and rookeries for migratory waterfowl. Juvenile fishes may also move into these areas. Decomposition of emergent vegetation yields detritus that is a key to energy cycling. These plants are also important in nutrient recycling and removal of contaminants.

Ceratophyllum demersum, Vallisneria spiralis, Potamogeton crispus, Myriophyllum verticilatum, Chara sp., Najas spp., and Salvinia sp. are the typical submerged aquatic vegetation (SAV) in these marshes (Al-Mayah 1978; IUCN 2005). SAV provides habitat for fishes and epiphytic macroinvertebrates. Furthermore, they attenuate water velocities, facilitating the settlement of suspended particles, thereby increasing water clarity. SAV also absorbs nutrients from the water column. Planktonic and epiphytic algal productivity is also enhanced by this marsh system (Al-Zubaidi 1985; Al-Lammi 1986; Al-Aarjy 1988).

2-The objectives of this review are to:

- Summarize the results of previous studies of this extensive marsh ecosystem, many of which are unpublished and not readily accessible to the scientific community; and
- To highlight key water quality factors affecting the structure and functions of this unique ecosystem.

![Figure 1. Map of Iraq (1a) and the Mesopotamian marshes (1b).](image-url)
Figure 2. (a) A composite view of the Mesopotamian marshlands from four Landsat 1 images and two false-color, near-infrared images, 1973–1976. The three main marsh areas are Al-Hawizeh, Central, and Al-Hammar, labeled 1, 2, and 3, respectively. The city of Basrah is located at number 4. Modified from Richardson et al. (2005). (b) A Landsat 7 Enhanced Thematic Mapper mosaic taken in 2000. Most of the drained marshes appear as grayish-brown patches, indicating dead marsh vegetation or low desert shrubs and dry ground. The white and gray patches indicate bare areas with no vegetation and sabkha (salterns) or shells covering the bottoms of former lakes. (c) False-color image of the remaining Mesopotamian marshlands, taken 2 September 2005. Black= areas newly reflooded since 2003. Reflooded areas adjacent to Al-Hawizeh, the western area of Al-Hammar, and waterways in the northern and southern parts of the Central marsh are also visible in black. Al-Hawizeh straddles the Iraq–Iran border (yellow line). Sampling sites: A, Al-Hawizeh; B, Central; C, Al-Hammar; D, Al-Sanaf; E, Abu Zarag; F, Suq Al-Shuyukh. MODIS satellite image courtesy of the United Nations Environment Programme, Iraq Marshlands Observation System (From: Richardson and Hussain, 2006).
3-Results

Water Temperature

Water temperatures of the marshes of southern Iraq experienced large seasonal fluctuations, with monthly averages ranging from 13.3 to 33.3°C (Figure 3). Due to the shallowness of the marshes, the seasonal cycle of water temperature closely followed that of the air temperature. The lowest water temperature (9.9°C) was observed during January 1988 in the Al-Hammar marsh (Al-Aarjy 1988; Hassan 1988). Variability was also greatest during the winter months. Maulood et al. (1979) reported little evidence of thermal stratification as surface and bottom temperatures usually differed by <0.5°C.

Salinity

Each of the marshes showed some evidence of saline intrusion (Figure 2). Salinities were generally in the oligohaline (0.5 to 5.0 PSU) range, although even low mesohaline salinities were reported from the Al-Hammar marsh (Table 1& 2). Banat et al. (2006) found that spatial and temporal differences existed between parts of Al-Hammar marsh but in general salinity increase toward the south.

Dissolved Oxygen

Dissolved oxygen (DO) concentrations were generally high (Figure 3). Hypoxia was rarely observed and then only in remote areas. DO concentrations ranged from 1.67 mg l⁻¹ (Al-Zubaidi 1985) to 11.95 mg l⁻¹ (Al-Laami 1986). Percent saturation ranged from 23.2% to 136.7%. A seasonal cycle was evident, in which the highest values occurred in winter and the lowest in summer (Figure 3). This cycle suggests that temperature, perhaps more so than biological processes, regulates the DO cycle in the marshes.

DO showed little relationship to depth. For example, Maulood et al. (1979) measured 4.2 mg l⁻¹ at the surface and 5.03 mg l⁻¹ at 3m (Table 3). Regionally, Al-Aarjy (1988) recorded 9.1 mg l⁻¹ in Al-Chebayesh/Qurna marshes, 8.30 mg l⁻¹ in Al-Hammar, and 8.1 mg l⁻¹ in the Al-Taar marsh during March and April of 1988 (Table 1). Seasonal changes in DO were less evident in the open marsh areas (“burkah”) and more pronounced in the littoral areas of the marsh, where changes in water levels were proportionately greater (Al-Zubaidi 1985; Al-Lammi 1986).

Carbon Dioxide

Few of the historical investigations dealt with direct determination of CO₂. Pankow et al. (1979) reported concentrations ranging from 2.2 to 11.8 mg
l$^{-1}$ in a Baghdad burkah (Qurna marshes); Al-Saadi et al. (1981) measured values between 15.0 and 26.0 mg l$^{-1}$ in the Al-Hammar marsh.

Several studies showed that the total available inorganic carbon (including free CO$_2$ and HCO$_3$) ranged between 88.6 and 160.2 mg l$^{-1}$ (Al-Zubaidi 1985; Kassim 1986; Al-Lammi 1986; Al-Arajy 1988).

Total Suspended Solids

Total suspended solids (TSS) concentrations in the Al-Hammar marsh ranged between 1.3 to 4.4 mg l$^{-1}$ (October 1987 to August 1988) (Al-Aarjy 1988).

Phytoplankton Abundance

The open water marshes were generally characterized by low concentrations of phytoplankton. Cell counts ranged from 0.97x103 cells l$^{-1}$ in February 1987 to 44.5x103 cells l$^{-1}$ in September 1979 (Maulood et al. 1981). In isolated areas cell counts did exceed 1.0 x106 cells l$^{-1}$ (Al-Zubaidi 1985; Al-Laami 1986). By comparison, Al-Saadi et al. (1981) recorded 6.0 x106 cells l$^{-1}$ in a Baghdad area burkah (Qurna marshes) during April and May 1987.

Light Penetration

Secchi disk depth is a common method used to determine the depth of light penetration in the water column (Lind 1979) and most of the previous marsh investigations employed this technique. Light generally penetrated to the bottom in open areas of the marshes (Table 1). Sediments were more easily disturbed in channels off the main body of the marshes and light penetration was diminished. For example, Maulood et al. (1979) recorded a Secchi depth of 50 cm near Um-Shuwayich (Qurna marshes), in an area affected by boat traffic and currents. In contrast a Secchi disk depth >3m was recorded in an open water area of the marsh.

Within the Al-Hammar marsh, Al-Aarjy (1988) and Hassan (1988) showed that there were regional differences in light penetration (Table 1). Secchi disk depths were greater in the Al-Hammar marsh than in the Al-Chebayesh (Qurna marshes) and Al-Taar marshes. Light penetration also varied seasonally (Figure 3), with the greatest depths in summer and fall and shallower depths in winter and spring.

Anions and Cations

Maulood et al. (1979) found that the concentrations of Na and K ranged from 60 to 232 mg l$^{-1}$ and 2.2 to 3.4 mg l$^{-1}$ respectively in Qurna marshes but Banat et al(2006) recorded higher values in Al-
Hammar 179 to 795 mg/l and 3-13 mg/l for Na and K respectively. These values were higher than those recorded in Lake Al-Habania, south of Baghdad (Al-Kaisi 1964). Al-Saadi et al. (1981) recorded SO$_4$ concentrations between 78 and 126 mg l$^{-1}$. Chloride concentrations ranged between 60 to 80 mg l$^{-1}$ in Qurna marshes (Baghdad burkah) during April and May.

Abdullah (1982) measured concentrations of the cations Na, Ca, Mg, and K in Al-Hammar marsh as 289, 89, 100, and 7 mg l$^{-1}$ respectively. Al-Saadi and Al-Mousawi (1988) recorded much higher values (849, 573, 209, and 47 mg l$^{-1}$ respectively). Concentrations of the anions Cl, HCO$_3$, SO$_4$, and CO$_3$ in the Hammar marsh were measured as 283 to 1284, 64, 278, and 2 mg l$^{-1}$ respectively (Abdullah 1982, Antoin 1984; Banat et al. 2006).

Hydrogen ion concentration (pH)

Mean pH in the three different marsh systems was slightly alkaline (Table 1). pH varied by depth (Table 2), with highest values near the surface. Highest pH occurred during the winter months and values during the other seasons were similar (Figure 3).

Total Alkalinity

Total alkalinity ranged between 72 and 336 mg CaCO$_3$ l$^{-1}$. Alkalinity was generally highest during winter and lowest during summer and autumn (Figure 3).

Mean alkalinity was similar between the two sub-areas of the Al-Hammar marshes and the Al-Chebayesh marsh (Qurna marshes) (Table 1). Al-Zubaidi (1985) reported 26 mg CaCO$_3$ l$^{-1}$ in the Qurna marshes while Al-Laami (1986) recorded values of ranging between 8 and 136 mg CaCO$_3$ l$^{-1}$ in the Al-Hammar marshes.

Total Hardness

Waters in the marsh system were defined as hard to very hard according to the Reid scale (Reid 1961), with values ranging from 452 to 1339 mg CaCO$_3$ l$^{-1}$ (Figure 3). Lower values were recorded in winter and autumn with highest values during summer. Spatial variations of HCO$_3$ concentration coincides with other ions. its average concentration in Al-Hammar marsh ranged 40-125 mg/l (Banat et al., 2006).

There was a difference between total hardness and the hardness due to Ca and Mg (Figure 3). Total hardness reflected contributions from Cl, SO$_4$, Na, and K as well as silicates. Large differences in hardness were observed between open water areas of the marshes and the more heavily vegetated areas (Al-Zubaidi 1985, Kassim 1986; Al-Laami 1986). Al-Aarjy
(1988) and Hassan (1988) reported similar values within the Al-Hammar marsh (Table 1).

Nutrients

The earliest studies of nutrients in the marshes dealt with non-organic nitrogen, phosphorus, and silicates. More recent research (late 1980’s) examined total and dissolved nitrogen and phosphorus.

Nitrite nitrogen concentrations ranged between 0.001 to 2.07 µmol l\(^{-1}\) (Al-Laami 1986, Al-Zubaidi 1985, Al-Aarjy 1988; Al-Rikabi 1992) in different parts of Al-Hammar marsh, although the mean concentrations only ranged up to 0.03 µmol l\(^{-1}\) (Table 1). Comparable values were found in the Qurna marshes (Maulood et al. 1979). Nitrite nitrogen concentrations were similar at different water depths (Table 2) and between seasons (Figure 5).

Nitrate nitrogen in the marshes ranged between 0.01-3.54 µmol l\(^{-1}\). These values were lower than those of Iraqi lakes (Rzoska et al. 1980, Moulood and Al-Mousawi 1984; Al-Tamimi 1992).

Seasonality of nitrate concentrations was pronounced (Figure 5). Spatial heterogeneity was particularly evident when littoral areas of Al-Hammar marsh were compared to open water areas (Al-Zubaidi 1985; Al-Laami 1986). Within the Al-Hammar marsh, nitrate concentrations were higher than in the Al-Chebayesh marshes (Qurna marshes) and lower in Al-Taar (Table 1). There was some evidence of vertical stratification with surface waters having higher concentrations than other depths (Table 2).

Ammonia concentrations in this system were generally low (0.001 to 3.23 µmol l\(^{-1}\)) (Al-Aarjy 1988). Al-Saadi et al. (1981) did, however, record concentrations as high as 14.29 µmol l\(^{-1}\) in a Baghdad area burkah in the Qurna marshes. There were seasonal changes in ammonia concentrations, with highest values during the summer and lowest during winter and spring (Figure 5).

Organic nitrogen represented a high percentage of total nitrogen (TN) in the marshes. Historically, TN concentration in the Al-Hammar marsh ranged from 5.6 to 21.4 µmol l\(^{-1}\). Total dissolved nitrogen concentrations of 2.3 to 17.1 µmol l\(^{-1}\) were measured during 1987-1988, when water levels were higher than normal (Al-Aarjy 1988). A comparison of TN in flowing and stagnant waters by Al-Rikabi (1992) showed that higher concentrations occurred when velocities were lower (20.7 to 48.9 µmol l\(^{-1}\) vs. 67.3 to 90.5 µmol l\(^{-1}\)). The lowest concentrations occurred during May with highest values in January. There was little spatial variability in TN...
concentrations. Al-Aarjy (1988) and Hassan (1988) reported concentrations of 8.9 to 14.4 μmol l$^{-1}$ in Al-Chebayesh, Al-Hammar and Al-Taar during March and April 1988 (Table 1).

Soluble reactive phosphate (SRP) was often the focus of the historical studies of marsh water quality. Concentrations ranged between 0.08 and 1.14 μmol l$^{-1}$ (Table 11). Seasonality was evident, with the highest values recorded in summer and autumn (Figure 5). Total phosphate (TP) concentrations ranged between 0.33-5.95 μmol l$^{-1}$ in Al-Hammar marsh (Al-Aarjy 1988; Al-Rikabi 1992).

The ratios of inorganic nitrogen: SRP were generally <10:1 and ranged down to 5:1 (Al-Aarjy 1988). TN:TP ratios were somewhat higher (Table 1).

Silicate concentrations in the southern marshes of Iraq were relatively high and were not a limiting nutrient for diatom growth. Concentrations ranged between 11.9 and 242 μmol l$^{-1}$. Mean concentrations were higher in Al-Taar than in either Al-Hammar or Al-Chebayesh (Table 1).
Table 1. Spatial variations in mean values of selected physical and chemical characteristics of the Al-Hammar marshes (Al-Hammar and Al-Taar) and Qurna marshes (Al-Chebayesh) of southern Iraq. (Adapted from: Al-Aarjy 1988 and Hassan 1988)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Al-Chebayesh</th>
<th>Al-Hammar</th>
<th>Al-Taar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Temperature (°C)</td>
<td>18.7</td>
<td>18.8</td>
<td>22.2</td>
</tr>
<tr>
<td>Dissolved oxygen (mg/l)</td>
<td>9.0</td>
<td>8.3</td>
<td>8.0</td>
</tr>
<tr>
<td>Secchi Disc Depth (cm)</td>
<td>115</td>
<td>280</td>
<td>135</td>
</tr>
<tr>
<td>Conductivity (µS cm⁻¹)</td>
<td>309</td>
<td>244</td>
<td>173</td>
</tr>
<tr>
<td>Salinity (PSU)</td>
<td>1.98</td>
<td>1.56</td>
<td>1.11</td>
</tr>
<tr>
<td>pH</td>
<td>7.16</td>
<td>7.28</td>
<td>7.26</td>
</tr>
<tr>
<td>Total Alkalinity (mg l⁻¹)</td>
<td>102</td>
<td>113</td>
<td>115</td>
</tr>
<tr>
<td>Total Hardness (mg l⁻¹)</td>
<td>753</td>
<td>564</td>
<td>594</td>
</tr>
<tr>
<td>Calcium (mg l⁻¹)</td>
<td>148</td>
<td>128</td>
<td>159</td>
</tr>
<tr>
<td>Magnesium (mg l⁻¹)</td>
<td>95</td>
<td>77</td>
<td>49</td>
</tr>
<tr>
<td>Nitrite Nitrogen (NO₂) (µmol l⁻¹)</td>
<td>0.03</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Nitrate Nitrogen (NO₃) (µmol l⁻¹)</td>
<td>0.55</td>
<td>0.20</td>
<td>0.01</td>
</tr>
<tr>
<td>Ammonia Nitrogen (NH₃) (µmol l⁻¹)</td>
<td>0.02</td>
<td>0.09</td>
<td>0.08</td>
</tr>
<tr>
<td>Total Nitrate Nitrogen (µmol l⁻¹)</td>
<td>13.47</td>
<td>11.90</td>
<td>14.40</td>
</tr>
<tr>
<td>Total Dissolved Nitrate Nitrogen (µmol l⁻¹)</td>
<td>8.30</td>
<td>5.70</td>
<td>10.20</td>
</tr>
<tr>
<td>Particulate Nitrate Nitrogen (µmol l⁻¹)</td>
<td>5.17</td>
<td>6.20</td>
<td>4.20</td>
</tr>
<tr>
<td>Total Phosphate (TPO₄) (µmol l⁻¹)</td>
<td>0.90</td>
<td>0.70</td>
<td>0.50</td>
</tr>
<tr>
<td>Soluble Reactive Phosphate (SRP) (µmol l⁻¹)</td>
<td>0.22</td>
<td>0.50</td>
<td>0.10</td>
</tr>
<tr>
<td>Total Phosphate (µmol l⁻¹)</td>
<td>0.60</td>
<td>0.20</td>
<td>0.40</td>
</tr>
<tr>
<td>Ratio of Total Nitrogen: Total Phosphorus</td>
<td>15:1</td>
<td>15:1</td>
<td>29:1</td>
</tr>
<tr>
<td>Total Silicates (SiO₂) (µmol l⁻¹)</td>
<td>11.9</td>
<td>11.9</td>
<td>17.0</td>
</tr>
</tbody>
</table>
Table 2. Mean and ranges of salinity (PSU), by region, in the marshes of southern Iraq.

<table>
<thead>
<tr>
<th>Region</th>
<th>Study Period</th>
<th>Mean (Range)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-Hammar Marsh</td>
<td>1969-1972</td>
<td>0.3 (0.2-0.4)</td>
<td>Al-Sahaf (1976)</td>
</tr>
<tr>
<td>Al-Hammar Marsh</td>
<td>1983-1984</td>
<td>4.0 (0.6-7.4)</td>
<td>Al-Zubaidi (1985)</td>
</tr>
<tr>
<td>Al-Hammar Marsh</td>
<td>1984-1985</td>
<td>2.3 (1.3-4.3)</td>
<td>Kassim (1986)</td>
</tr>
<tr>
<td>Al-Hammar Marsh</td>
<td>May 1985</td>
<td>2.2 (1.5-2.8)</td>
<td>Al-Saadi and Al-Mousawi (1988)</td>
</tr>
<tr>
<td>Al-Hammar Marsh</td>
<td>1990-1991</td>
<td>5.2 (3.5-6.3)</td>
<td>Al-Rikabi (1992)</td>
</tr>
<tr>
<td>Qurna Marsh</td>
<td>October 1977</td>
<td>1.3 (--</td>
<td>Arndt and Al-Saadi (1975)</td>
</tr>
<tr>
<td>Qurna Marsh</td>
<td>April 1977</td>
<td>0.6 (0.5-0.6)</td>
<td>Pankow et al. (1979)</td>
</tr>
<tr>
<td>Qurna Marsh</td>
<td>February 1978</td>
<td>0.4 (0.3-0.5)</td>
<td>Maulood et al. (1979)</td>
</tr>
<tr>
<td>Qurna Marsh</td>
<td>April-June 1978</td>
<td>0.4 (0.3-0.5)</td>
<td>Al-Saadi et al. (1981);</td>
</tr>
<tr>
<td>Qurna Marsh</td>
<td>September 1979</td>
<td>0.6 (0.6-0.6)</td>
<td>Maulood et al. (1981)</td>
</tr>
</tbody>
</table>

Table 3. Mean values of selected physical and chemical variables, by depth, in the marshes of southern Iraq (Adapted from: Maulood et al. 1979)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Near-surface</th>
<th>1-m</th>
<th>2-m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Temperature (°C)</td>
<td>15.3</td>
<td>15.3</td>
<td>15.3</td>
</tr>
<tr>
<td>Conductivity (µS cm⁻¹)</td>
<td>98</td>
<td>92</td>
<td>91</td>
</tr>
<tr>
<td>Dissolved Oxygen (mg l⁻¹)</td>
<td>4.2</td>
<td>5.2</td>
<td>5.0</td>
</tr>
<tr>
<td>pH</td>
<td>8.40</td>
<td>7.97</td>
<td>8.1</td>
</tr>
<tr>
<td>Total Alkalinity (mg l⁻¹)</td>
<td>294</td>
<td>301</td>
<td>306</td>
</tr>
<tr>
<td>Sodium (mg l⁻¹)</td>
<td>148</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>Potassium (mg l⁻¹)</td>
<td>2.8</td>
<td>2.7</td>
<td>2.9</td>
</tr>
<tr>
<td>Nitrite Nitrogen (NO₂⁻) (µmol l⁻¹)</td>
<td>0.12</td>
<td>0.13</td>
<td>0.11</td>
</tr>
<tr>
<td>Nitrate Nitrogen (NO₃⁻) (µmol l⁻¹)</td>
<td>4.51</td>
<td>1.42</td>
<td>3.0</td>
</tr>
<tr>
<td>Ammonia Nitrogen (NH₃) (µmol l⁻¹)</td>
<td>0.64</td>
<td>0.80</td>
<td>0.64</td>
</tr>
<tr>
<td>Total Phosphate (TPO₄⁻) (µmol l⁻¹)</td>
<td>0.31</td>
<td>0.37</td>
<td>0.52</td>
</tr>
<tr>
<td>Total Silicates (SiO₂) (µmol l⁻¹)</td>
<td>65.4</td>
<td>65.4</td>
<td>61.4</td>
</tr>
</tbody>
</table>
Figure 3. Mean and ranges of water temperature, light penetration, pH, total alkalinity, hardness, and dissolved oxygen, by season, in the marshes of southern Iraq. Adapted from: Arndt and Al-Saadi (1975); Maulood et al. (1979 and 1981); Pankow et al. (1979); Al-Saadi et al. (1981); Al-Zubaidi (1985); Al-Laami (1986); Kassim (1986); Al-Aarjy (1988); Al-Saadi and Al-Mousawi (1988); Al-Sayab (1988); Hassan (1988); Mohammad (1989); Hussein et al. (1992).

Figure 4. Relative molar distribution of major cations and anions in water samples from the Al-Hammar marsh, compared to seawater, precipitation, and river water (after Livingstone 1963). Adapted from Hussain and Hassan (2003).
Figure 5. Mean and ranges of nitrite, nitrate, ammonia, soluble reactive phosphorus, and silicates, by season, in the marshes of southern Iraq. Adapted from: Al-Zubaidi (1985); Al-Laami (1986); Kassim (1986); Al-Aarjy (1988); Hassan (1988); Al-Rikabi (1992).
4- Discussion

Investigations of the water quality of Iraq’s southern marshes have generally been limited in scope, duration, seasonality, and spatial extents (e.g., Al-Hammar marsh). There have been few studies of the Qurna (central) marshes and none in the Al-Huwayza marshes because of accessibility issues.

Yuaqub and Salman (1992) concluded that, although the southern marshes were relatively large water bodies occupying vast areas, they were affected by the arid climate and its characteristic temperatures, humidity, precipitation and evaporation. Water temperature closely followed the seasonal cycle of air temperature because of the shallow water depths of this ecosystem.

Salinity of the marshes was affected by both the volume of freshwater entering the marsh system and evaporation rates. Salinity was generally quite low when river flows were high (Pankow et al. 1979; Al-Saadi et al. 1981). During the September through November dry season salinity increased due to diminished freshwater contributions (Arndt and Al-Saadi 1975; Maulood et al. 1981; Al-Aarjy 1988; Hassan 1988).

The second factor affecting salinity, evaporation rate, is linked to the higher seasonal temperatures during summer and early fall. Yuaqub and Salman (1992) estimated summer evaporation rates in the southern marshes as 1840 mm year$^{-1}$ whereas Bringh (1960) calculated a higher rate (2450 mm year$^{-1}$). Banat et al. (2006) reach the same conclusion that evaporation play the major role in deciding the salinity of the southern marshes.

Although evaporation is a factor in this seasonal cycle, the diversion of flows from the Tigris and Euphrates to dams and reservoirs in Turkey, Syria, Iran, and Iraq have further reduced the amount of water entering to the marshes. Al-Rikabi (1992) recorded a salinity of 6.3 PSU. This was higher than other lakes, reservoirs, and rivers in Iraq at this time. In fact, the salinity of the southern marshes was higher than that of the Tigris, Euphrates, and Diyala rivers (Al-Mukhtar et al. 1985), Al-Habaniya lake, and the Dokan Reservoir (northwest of Sulaymaniyah in Kurdistan) (Al-Hamed 1976, Shaban 1980; Zdanowski et al. 2001a). Salinities were still lower than that of Sawa (south of Baghdad), and Al-Razaza (southwest of Baghdad) lakes (Maulood and Al-Mousawi 1984; Al-Tamimi 1992; Zdanowski et al. 2001a).
Salinity values have gradually increased over time, reaching 6.3 PSU in 1991 (Al-Rikabi 1992). Again, this was likely related to the construction of dams and reservoirs in recent decades. Salinities >0.5 PSU are generally considered unsuitable for human consumption and values ≥ 1.5 PSU preclude the use of the water in agriculture.

TSS concentrations in Al-Hammar marsh ranged between 1.3 and 4.4 mg l⁻¹ (Al-Aarjy 1988). These concentrations are <30th percentile for Florida lakes and streams (Friedeman and Hand 1989). Higher TSS concentrations have been recorded from the Tigris and Euphrates rivers and the Shatt Al-Arab River (Rzóska et al. 1980). The intensive macrophyte growth in the marshes effectively reduced current velocities. This, in turn, facilitated the settlement of suspended particles, assuring the role of the southern marshes as a sedimentation bed for suspended particles brought by the Tigris and Euphrates rivers.

Secchi disk depths often reached the bottom in open areas of the marshes. Light penetration in these marshes was typically greater than in Iraqi lakes (Rzóska et al. 1980; Al-Tamimi 1992; Zdanowski et al. 2001b). Thick aquatic vegetation facilitated the settling of suspended materials, thereby increasing the light penetration of the water column. Light penetration in shallow areas was restricted because waters were typically colored from the phytoplankton and suspended material (Al-Aarjy 1988; Hassan 1988). Secchi disk depths were more restricted in channelized areas used by boats, which can resuspend fine-grained sediments.

DO concentrations were generally adequate to support aquatic life (i.e., >4 mg l⁻¹) and, in fact, were generally high. This was due to the shallowness of the marshes, its extensive plant coverage, and epipelic phytoplankton. Hypoxia was rarely observed. Rzóska et al. (1980) pointed out that in certain areas of the marshes decomposition of vegetation and high organic loads from buffalo and cow feces and urine contributed to hypoxia (cf. Al-Zubaidi 1985).

pH values in the marshes should have been related to the CO₂ content. In summer and autumn, increased CO₂ should have reduced pH due to decomposition of organic material same was reported by Banat et al. (2006) that lower pH existed in Al-Shafi marsh. However pH was largely unaffected because the high water temperatures reduced the solubility of CO₂ and let it escape to the air, leading to equilibrium between water and air.

pH was generally been on the alkaline
side with a slight increase in dissolved CO$_2$ during summer and autumn. Al-Zubaidi (1985) reported a pH of 9.13 in the Qurna marshes that coincided with very high concentrations of phytoplankton during the spring bloom. Al-Kaisi (1976) and Banat et al. (2006), however, recorded values as low as 6.5. The dense macrophyte beds in the marshes contributed to high CO$_2$ during winter and spring which, in turn, contributed to the reduced pH and also to biological activities of micro-organisms aid in the decomposition of organic sulfur compounds yielding in lowering the pH.

Alkalinity was mainly related to bicarbonate concentrations within marsh waters, which was generally considered to be hard to very hard. Alkalinity values were comparable to those reported by Miller et al. (1999) for another large marsh ecosystem, the southern Everglades of Florida (USA). Total hardness values revealed the importance of sulfate and chloride salts in addition to carbonate hardness. The marshes of southern Mesopotamia, then, appeared to be generally similar to other water bodies in Iraq at this time.

pH values between 7 and 8 indicated a slight increase of CO$_2$ in the water. This was found to be the case in the marshes year-round. The high water and air temperatures accelerated the decay of organic material, leading to the breakdown of CaCO$_3$, increased CO$_2$, and the formation of carbonic acid. During periods of high primary productivity (winter and spring) there was increased pH and precipitation of CaCO$_3$. This CaCO$_3$ precipitate can be recognized as a thin layer on the leaves of macrophytes in the marshes.

Abdullah (1982) pointed out that the concentrations of cations and anions of Al-Hammer exceeded that of the Tigris and Euphrates rivers. He showed that the concentrations of these ions were ranked as: Na > Mg > Ca > K > Cl > SO$_4$ > CO$_3$, the same was concluded by Banat et al. (2006). This ranking is indicative of concentration mid-way between marine and riverine waters.

Richardson et al. (2005) pointed out that all major cations and anions in Iraqi inland waters, except K, exceeded the concentrations reported for the mean of the world’s rivers by 1-2 orders of magnitude. These results were similar to other rivers and water bodies in arid regions in which evaporation of significant amounts of water resulted in greater concentrations of ions than non-arid rivers before reaching the ocean (Schlesinger 1997). Hussain and Hassan (2003) showed that cations and anions concentrations in Al-Hammar marsh
differed in composition from riverine and estuarine waters as well as from wet precipitation. Nutrient concentrations were never limiting for phytoplankton and macrophyte productivity. The shallowness of the marshes facilitated the release of nutrients from the marsh sediments and the decomposition of submerged and emergent vegetation also contributed to the nutrient load (Maulood et al. 1979). Marsh waters were characterized by low nitrite nitrogen concentrations, which suggested that pollution was relatively low. DO depletion at night did lead to some increases in nitrites (Al-Mousawi and Hussain 1992).

Nitrate nitrogen is the most common form of inorganic nitrogen in well-oxygenated waters and is always found in low concentrations in unpolluted waters (Reynolds 1984). In this marsh system nitrate was also the dominant form of inorganic nitrogen with averages between 0.01 and 3.5 µmol l\(^{-1}\). These values were low compared to other water bodies in Iraq, such as the Razaza and Sawa lakes (Rzóska et al. 1980, Maulood and Al-Mousawi 1984; Al-Tamimi 1992). The low concentrations were likely related to the dense macrophyte growth and the low density of agriculture in this system.

The non-organic phosphorus concentrations in the marshes were within the range typical of lakes in different parts of the world (Reid 1961). Concentrations tended to be higher during the summer months. High water temperatures accelerate the decay of submerged and emergent vegetation and uptake by plants is low. Concentrations were lower during the cooler months because primary production was higher and rainfall and increased stream flow diluted concentrations of phosphate.

Phosphorus concentrations may remain relatively high in marsh waters because the macrophytes are unable to absorb all of the phosphorus available relative to the available nitrogen pool (Al-Aarjy 1988; Al-Rikabi 1992). In fact, Al-Aarjy (1988) noted that activity of the enzyme soluble alkaline phosphate was relatively low during March and April 1988 in Al-Hammar marsh. Several authors have attributed the presence of this enzyme to be an indicator that the macrophytes were relying upon organic sources of phosphorus (Healey 1982).

Silicate concentrations in the marshes were also similar to that of other water bodies in Iraq at that time (Al-Kaisi (1964), Rzóska et al. 1980, Shaban 1980, Al-Laami 1986, Al-Aarjy 1988; Al-Tamimi 1990).
The higher concentrations during summer and fall may be indicative of the release of silicates from the sediments and decomposing diatoms (Reynolds 1984).

These concentrations were never a limiting factor for phytoplankton growth. This is the typical condition for water bodies proximate to arid lands, such as are common in Iraq. Nutrient limitation experiments indicated that the marsh phytoplankton were nitrogen limited. Water quality data showed that the ratio of inorganic nitrogen:SRP was typically ~10:1. Under such conditions (especially where N:SRP ratios are this low), conditions are favorable for the dominance of the phytoplankton by nitrogen-fixing cyanobacteria. Al-Mousawi and Whitton (1983) in fact, found that blue-green algae were abundant in the marshes they studied.

Water quality conditions in the marsh ecosystem of southern Iraq has been investigated for more than 20 years by a variety of researchers and graduate students, each examining a specific problem. These marshes are a valuable resource both ecologically and economically. The waterways, vegetation, waterfowl, shrimp and finfish provide habitat and food resources for the local populace. These water resources and the inhabiting fauna offer the potential for exploitation by populations within southern Iraq. As restoration of this unique and vast system continues (Iraqi Ministries of Environment, Water Resources, Municipalities, and Public Works 2006), it is imperative that monitoring of the marsh’s water quality and biota continue so that progress can be measured and problems are identified before they become detrimental to the restoration process.

5- Acknowledgements

Appreciation is extended to the many graduate students and faculty at Basrah University, Baghdad University, and Sulaimaniyah University whose investigations provided the basis for this review. These “baseline” data will greatly aid those scientists and students currently working on these marshes to evaluate the restoration of this ecosystem that is invaluable to the people of Iraq and the northern Arabian Gulf.

6- References

Al-Aarjy, M.J., 1988. An Ecological Study

Hussein, S.D., H.A. Ahmed, and J.M. Abed. 1992. Seasonal variations in some biological conditions in the Shatt

J. Bangladesh Academy of Science, 22:47-54.

Ministry of Information, Republic of Iraq, 307pp. (in Arabic)

Warning and Assessment, UNEP.

University of Exeter. Published by the AMAR Appeal Trust, London, 224 pp.
استعراض لنوعية المياه في أهوار وادي الرافدين قبل التجفيف الكبير لها في بداية التسعينات

نجة عبد حسين* و سيفن جريب
قسم علوم الحياة - كلية العلوم - جامعة البصرة

الخلاصة

تراوحت مساحة الأهوار العراقية الجنوبية ما بين 600-8000 كم². ان وصول المياه الغنية بالبيتا تأثرت بإنشاء السدود على نهر دجلة وفرات في الدول المتجاورة لهما. في بداية التسعينات قامت الحكومة العراقية السابقة بتجميد مساحات شاسعة و رئيسية من هذا النظام البيئي و حفر تجمعات كبيرة وواسعة لنواتج القصب الشائع وما يقدر من هذه الأهوار يقدر بقليل من 10% من مساحتها السابقة بعدد عام 2000 (Partow 2001 and Branigston 2002) هذا الاستعراض يلخص المعلومات والنتائج المشروعة عن نوعية المياه في هذا النظام البيئي الفريد قبل قيام الحكومة العراقية السابقة بدميمه من خلال عملية تجميد منظمة. أن هذه النتائج جاءت من العديد من الأبحاث المنشورة ورسائل الماجستير والدراسات المحدودة النشر. ان نوعية المياه المقصودة تشمل الملوحة والتركيب البشري وعدد من العوامل المتصلة بحالة البيئات. بيد أن النتائج أن درجة الملوحة تزداد مع مرور الزمن. أما تركيز الأوكسجين المذاب فتعود من حيثيات عن الموارد ذات نظامية خفيفة وكما أن كثافة النباتات المائية العالية تساعد على تربث المواد العالية. النواتج هى المقصود مواصلة الدراسات السائدة من التشريجات اللاضوئية. ين تركز على المقارنة مع بقية الأجسام اليساوية الداخلية وتبين أن النواتج هي العامل المحدد لنمو الهياكل النباتية.