Lie and Jordan Structure in Prime Γ-rings with Γ-centralizing Derivations

Abdulrahman H. Majeed*, Aliaa Aqeel Majeed
Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq
*ahmajeed6@yahoo.com

Abstract
Let M be a prime Γ-ring satisfying $a\alpha b\beta c = a\beta b\alpha c$ for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$ with center Z, and U be a Lie (Jordan) ideal. A mapping $d : M \rightarrow M$ is called Γ-centralizing if $[u, d(u)]_\alpha \in Z$ for all $u \in U$ and $\alpha \in \Gamma$. In this paper, we studied Lie and Jordan ideal in a prime Γ-ring M together with Γ-centralizing derivations on U.

Keywords: Prime Γ-ring, Lie ideal, Jordan ideal, Γ-centralizing, Derivation.

1. Introduction
N. Nobusawa [1] introduced the notion of Γ-ring, more general than a ring. W. E. Barnes [2] weakened slightly the conditions in the definition of Γ-ring in the sense of Nobusawa after these two papers were published, number of modern algebraists have determined a lot of fundamental properties of Γ-ring and extended numerous significant results in classical ring theory to gamma ring theory see [3, 4, 5 and 6] for partial references.

In classical ring the theory of centralizing mapping on prime ring was initiated by Posner [7] who proved that the existence of a nonzero derivation on a prime ring forces the ring to be commutative. In [8] R. Awtar considered centralizing derivations on Lie and Jordan ideals generalized Posner's theorem. A lot of work has been done during the last decades in this field see [9, 10, 11, and 12] where further reference can be found.

By the same motivation as in the classical ring theories we proved the following results. Let M be a prime Γ-ring, satisfying, $a\alpha b\beta c = a\beta b\alpha c$ for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$ and it will represented by (*)

i) If characteristic of M is different from 2 and 3 and U be Lie ideal then if d is Γ-centralizing
on \(U \) then \(U \) is central in \(M \).

ii) If \(M \) has characteristic \(3 \) and \(U \) is Jordan ideal, then if \(d \) is \(\Gamma \) -centralizing then \(U \) is central in \(M \) further, if \(U \) is a Lie ideal with \(uca \in U \) for all \(u \in U \) and, \(\alpha \in \Gamma \), then \(U \) is central in \(M \). The case when \(M \) has characteristic \(2 \) is also studied.

2. Some Basic Definitions

Definition 2.1 [2]: Let \(M \) and \(\Gamma \) be two additive abelian groups. If there exists a mapping \((a,a),b \mapsto aab \) of \(M \times \Gamma \times M \rightarrow M \) which satisfies for all \(a,b,c \in M \) and \(\alpha, \beta \in \Gamma \):

1) \((a+b)\alpha = aac + bca,
2) \alpha(a + \beta)b = aab + ab\beta,
3) \alpha b + c = abc + aac.

\((aabb) \beta \) is called \(\Gamma \)-ring in the sense of Barnes.

Definition 2.2 [3]: An additive subgroup \(S \) of a \(\Gamma \)-ring \(M \) is called subring if \(\Sigma S \in S \).

Definition 2.3 [3]: An additive subgroup \(I \) of \(M \) is said to be a left (or right) ideal of \(M \) if \(M \Gamma I \subseteq I \) (or \(I \Gamma M \subseteq I \)), if \(I \) is both a right and left ideal, then we say that \(I \) is an ideal.

Definition 2.4 [3]: Let \(M \) be a \(\Gamma \)-ring then \(M \) is called prime if \(a, b \in M \) and \(a \Gamma M b = 0 \) implies either \(a = 0 \) or \(b = 0 \) where \(a,b \in M \).

Definition 2.5 [3]: A subset \(S \) of a \(\Gamma \)-ring \(M \) is called strongly nilpotent if there exists a positive integer \(n \) such that \(\Sigma \Gamma^n S = 0 \).

Remark:
1) For any \(a, b \in M \), \(ab \beta - bca \) are denoted by \([a,b]_\alpha \). Then one has the basic identities,

\([a, b\alpha]_\beta = [a, \alpha]_\beta b + a\beta b, [a, \beta]_\alpha b, [a, \beta]_\alpha \),

And,

\([a, b\beta]_\alpha = b\beta [a, \alpha] + [a, \alpha] + b\beta [a, \alpha], [a, b\beta]_\alpha \),

for all \(a, b, c \in M \) and \(\alpha, \beta \in \Gamma \). Using the assumption (*) the above identities reduce to,

\([a, b\beta]_\alpha = [a, \alpha]_\beta b + a\beta b, [a, \beta]_\alpha \).

And,

\([a, b\beta c]_\alpha = b\beta [a, \alpha]_\beta + [a, \alpha] + b\beta [a, \alpha], [a, b\beta c]_\alpha \).

2) Let \(M \) be a \(\Gamma \)-ring, the center of \(M \) is defined as, \(Z = \{a \in M : a\alpha \alpha = a\alpha \alpha \text{ for all } m \in M, \alpha \in \Gamma \} \).

Definition 2.6 [13]: An additive subgroup \(U \) of a \(\Gamma \)-ring \(M \) is said to be a Lie ideal of \(M \) if \([u, m]_\alpha \in U, \text{ for all } u \in U, m \in M \) and \(\alpha \in \Gamma \). And \(U \) is said to be Jordan ideal if \(uca + mac \in U \), for all \(u \in U, m \in M \) and \(\alpha \in \Gamma \).

Definition 2.8 [14]: An additive mapping \(d : M \rightarrow M \) is called a derivation of \(M \) if,

\(d(xm) = d(x\alpha) + xadm(x), \text{ holds for all } x, y \in M \) and \(\alpha \in \Gamma \).

For a fixed \(a \in M \) and \(\alpha \in \Gamma \) the mapping, \(I^\alpha : M \rightarrow M \) given by \(I^\alpha = [m, a]_\alpha \), is said to be inner derivation of \(M \) [15].

Definition 2.9 [16]: Let \(M \) be a \(\Gamma \)-ring with center \(Z \) and \(U \) be lie (Jordan) ideal of \(M \). A mapping \(d : M \rightarrow M \) is called \(\Gamma \)-centralizing (resp. \(\Gamma \)-commuting) if \([u, d(u)]_\alpha \in Z \) (resp. \([a, d(u)]_\alpha = 0, \text{ for all } u \in U, \alpha \in \Gamma \).

3. Basic Lemmas

For proving our main results, we need some important results which we have proved here as lemmas. So, we start as follows:

Lemma 3.1: Let \(M \) be a prime \(\Gamma \)-ring, \(d \) a nonzero derivation of \(M \) and \(a \) be an element of \(M \) if \(aacd(m) = 0 \), for all \(m \in M \) and \(\alpha \in \Gamma \). Then either \(a = 0 \) or \(d \) is zero.

Proof:
We have \(aacd(m) = 0 \), for all \(m \in M \) and \(\alpha \in \Gamma \). Replace \(m \) by \(maks \) where \(x \in M \), then

\(aacd(maks) = aacd(m)акс + aconcd(x) = aconcd(x) \).

For all \(x \in M \) and \(\alpha \in \Gamma \). That is

\(\Gamma \Gamma d(x) = 0, \text{ for all } x \in M \).

Since \(M \) is prime, either \(a = 0 \) or \(d \) is zero.

Lemma 3.2: Let \(M \) be a prime \(\Gamma \)-ring of characteristic not \(2 \) and \(d_1, d_2 \) be a derivation of \(M \) such that the iterate \(d_1d_2 \) is also a derivation. Then one at least of \(d_1, d_2 \) is zero.

Proof:
We have \(d_1d_2 \) is a derivation of \(M \) that is,

\(d_1d_2(acab) = d_1d_2(a)cab + aacd_1(b), \text{ for all } a,b \in M \) and \(\alpha \in \Gamma \).
But \(d_1, d_2 \) are each derivation so,
\[
d_1 d_2 (a c b) = d_1 (d_2 (a c b)) + d_2 (a c d_1 (b)) + d_1 (a c d_2 (b) + a c d_1 (d_2 (b))).
\]

But,
\[
d_1 d_2 (a c b) = d_1 (d_2 (a c b)) + a c d_1 (d_2 (b))
\]

So,
\[
d_2 (a c d_1 (b)) + d_1 (d_1 (a c d_2 (b)) = 0,
\]

for all for all \(a, b, c \in M \) and \(\alpha \in \Gamma \) ...

(1)

Replace \(a \) in the last equation by \(a c d_1 (c) \)
\[
d_2 (a c d_1 (c)) c d_1 (b) + d_1 (a c d_1 (c)) c d_2 (b) = 0, \text{ for all } a, b, c \in M \text{ and } \alpha \in \Gamma .
\]

That is
\[
a c (d_2 (d_1 (c) c d_1 (b))) + d_1 (d_1 (a c d_2 (c)) c d_1 (b)) = 0
\]

for all \(a, b, c \in M \) and \(\alpha \in \Gamma \).

Which is merely equation (1) with a replaced by \(d_1 (c) \), then we are left with
\[
d_2 (a c d_1 (c)) c d_1 (b) + d_1 (a c d_1 (c)) c d_2 (b) = 0, \text{ for all } a, b, c \in M \text{ and } \alpha \in \Gamma .
\]

But,
\[
d_1 (a c d_2 (b)) = -d_1 (a c d_1 (b)) \text{ by replacing } a \text{ by } c \text{ the last equation becomes,}
\]
\[
d_2 (a c d_1 (c)) c d_1 (b) = 0, \text{ for all } a, b, c \in M \text{ and } \alpha \in \Gamma .
\]

Factoring out \(a c d_1 (b) \) on the right, we have
\[
(d_2 (a c d_1 (c)) - d_1 (a c d_2 (c)) c d_1 (b)) = 0,
\]

for all \(a, b, c \in M \) and \(\alpha \in \Gamma .
\]

And by Lemma 3.1 unless \(d_1 = 0 \) we have,
\[
(d_2 (a c d_1 (c)) - d_1 (a c d_2 (c)) c d_1 (b)) = 0,
\]

for all \(a, c \in M \) and \(\alpha \in \Gamma .
\]

Replace \(b \) by \(c \) in (1) then,
\[
(d_2 (a c d_1 (c)) + d_1 (a c d_2 (c))) = 0,
\]

for all \(a, c \in M \) and \(\alpha \in \Gamma .
\]

Adding these last two equations, we get
\[
2d_2 (a c d_1 (c)) = 0, \text{ for all } a, b, c \in M \text{ and } \alpha \in \Gamma .
\]

Since characteristic of \(M \) not equal 2, then
\[
d_2 (a c d_1 (c)) = 0, \text{ or else } d_1 = 0 \text{ using Lemma \(3.1 \) again with } a \text{ replacing } d_2 (a)
\]

we get, either
\[
d_1 = 0 \text{ or } d_2 = 0
\]

Lemma3.3: Let \(M \) be a prime \(\Gamma \) -ring of characteristic different from 2, \(U \) be Lie ideal of \(M \) and \(d \) be anon zero derivation of \(M \).

Then if \(d \) is \(\Gamma \) -centralizing on \(U \) and \(u c a u \in U \), for all \(u \in U \) and \(\alpha \in \Gamma \), then \(M \) is \(\Gamma \) - commuting on \(U \).

Proof:
We have \(d \) is \(\Gamma \) -centralizing on \(U \)
i.e.
\[
[u, d(u)]_x = Z, \text{ for all } u \in U, \text{ and } \alpha \in \Gamma .
\]

Linearizing the above relation on, \(u = u + u c a \), we get
\[
[u c a, d(u)]_x + [u, u c a d(u) + d(u) c a u]_x \in Z,
\]

for all \(u \in U, \text{ and } \alpha \in \Gamma .
\]

That is,
\[
4[u, d(u)]_x = Z, \text{ for all } u \in U, \text{ and } \alpha \in \Gamma .
\]

Since characteristic of \(M \) not equal 2
\[
[u, d(u)]_x \in Z, \text{ then we get }
\]
\[
[u, d(u)]_x = 0, \text{ for all } m \in M, u \in U \text{ and } \alpha, \beta \in \Gamma .
\]

If for some \(u \in U, \text{ } [u, d(u)]_x \neq 0 \) then we get
\[
[u, m]_{\beta} = 0, \text{ in particular } [u, d(u)]_x = 0
\]

Hence,
\[
[u, d(u)]_x = 0, \text{ for all } u \in U, \text{ and } \alpha \in \Gamma .
\]

Lemma3.4: Let \(M \) be a prime \(\Gamma \) -ring, \(U \) be a Lie ideal of \(M \) and \(d \) a nonzero derivation of \(M \).

If \(d \) is \(\Gamma \) -centralizing on \(U \) then
\[
[[d(m), u]_{\alpha}, u]_x \in Z,
\]

for all \(m \in M, u \in U \) and \(\alpha, \beta \in \Gamma .
\]

Further, if \(d \) is \(\Gamma \) -commuting on \(U \) then,
\[
[[d(m), u]_{\beta}, u]_x = 0,
\]

for all \(m \in M, u \in U \) and \(\alpha, \beta \in \Gamma .
\]

Proof:
Since \(U \) is Lie ideal then,
\[
[u, m]_{\alpha} \in U,
\]

for all \(u \in U, m \in M \) and \(\alpha \in \Gamma .
\]

So that, \([u + [u, m]_{\beta}, d(u + [u, m]_{\beta})]_x \in Z.
\]

That is,
\[
[[u, m]_{\beta}, d(u)]_x + [u, [d(u), m]_{\beta}]_x + [u, [d(u), m]_{\beta}]_x \in Z,
\]

for all \(m \in M, u \in U \) and \(\alpha, \beta \in \Gamma .
\]

Now since, for any for all \(m \in M, u \in U \) and \(\alpha, \beta \in \Gamma \) and by (*) we have
\[
[[u, m]_{\beta}, d(u)]_x + [u, [d(u), m]_{\beta}]_x = [m, [d(u), u]_{\beta}]_x \in Z.
\]

By \(\Gamma \) -centralizing of \(d \) we get,
\[
[[u, m]_{\beta}, d(u)]_x + [u, [d(u), m]_{\beta}]_x = 0.
\]

Hence,
\[[d(m),u]_{\alpha},u\]_{\alpha} \in Z,
for all \(m \in M, u \in U\) and \(\alpha, \beta, \in \Gamma\).
The last part can be obtained similarly.

Lemma 3.5: Let \(M\) be a prime \(\Gamma\)-ring of characteristic not equal to 2 and 3, and let \(U\) be a Lie ideal of \(M\), if \(d\) is \(\Gamma\)-centralizing on \(U\) then \(d\) is \(\Gamma\)-commuting on \(U\).

Proof:
Since \(d\) is \(\Gamma\)-centralizing then, by Lemma 3.4, we have
\[[d(m),u]_{\alpha},u\]_{\alpha} \in Z,
for all \(m \in M, u \in U\) and \(\alpha, \beta, \in \Gamma\).
By using the assumption (*) we get
\[u\beta u\alpha cd(m) + d(m)\alpha u\beta \beta u\beta - 2m\beta d(m)\alpha u\beta \in Z,
for all \(m \in M, u \in U\) and \(\alpha, \beta, \in \Gamma\).
(2)
Commuting with \(u\), we have
\[3m\beta u\alpha cd(u) + u\beta u\alpha cd(m) = 3m\beta d(m)\alpha u\beta + d(m)\alpha u\beta \beta \]
In (3) replace \(m\) by \(u\) and using \(d\) is \(\Gamma\)-centralizing,
\[u\beta u\alpha cd(u) - d(u)\alpha u\beta \beta \]
Furthermore,
\[2(u\beta u\alpha cd(u) - d(u)\alpha u\beta \beta) = u\beta u\alpha cd(u) - d(u)\alpha u\beta \beta,
\]
Write \(d(m) = m'\) and then by replacing \(m\) by \(u\alpha m'\) in (4), we get
\[3u\beta u\alpha cd(m') + u\beta u\alpha cd(m') - u\alpha cd(m')\alpha u\beta + 3m\beta d(u)\alpha m' u\beta + u\beta u\alpha cd(u) - 3m\beta u\alpha cd(u) - d(u)\alpha m' u\beta = 0,
for all \(m \in M, u \in U\) and \(\alpha, \beta, \in \Gamma\).
(6)
However, by assumption (*) and (4), we have
\[3u\beta u\alpha cd(m') + u\beta u\alpha cd(m') - u\alpha cd(m')\alpha u\beta = 3u\beta u\alpha cd(m') + u\beta u\alpha cd(m') - u\alpha cd(m')\alpha u\beta = 0.
Then equation (6) becomes,
\[3u\beta u\alpha cd(u) + u\beta u\alpha cd(u) - d(u)\alpha m' u\beta + u\beta u\alpha cd(u) - d(u)\alpha u\beta \beta = 0.
Using (5) and (6), we arrive at after dividing by 3,
\[(u\alpha u - d(u)\alpha u)\alpha (m'\alpha + m\alpha + u\beta u\beta - 2u\beta u\beta) = 0,
for all \(m \in M, u \in U\) and \(\alpha, \beta, m \in \Gamma\).
If \(u\beta (m'\alpha + u\beta u\beta) - 2u\beta u\beta) = 0\), for some \(u \in U\) and \(\alpha, m \in \Gamma\).
Then we have
\[m'\alpha + u\beta u\beta - 2u\beta u\beta = 0\),
Replace \(m\) by \(u\beta m\) in (9) and using (*) we get,
\[u\beta m'\alpha + u\beta u\beta u\beta - 2u\beta u\beta u\beta + d(u)\beta m\alpha u\beta + u\beta u\beta (u\beta m)\beta - 2u\beta d(u)\alpha m\beta = 0\)
By using (9) we get,
\[u\beta (m'\alpha + u\beta u\beta) - 2u\beta u\beta) = 0\),
Then equation (10) becomes,
\[d(u)\beta m\alpha u\beta + u\beta u\beta (u\beta m)\beta - 2u\beta d(u)\alpha m\beta = 0\)
Now in (9) replace \(m\) by \(u\), and multiply this on the right by \(\beta m\),
\[d(u)\beta m\alpha u\beta + u\beta u\beta (u\beta m)\beta - 2u\beta d(u)\alpha m\beta = 0\)
Subtract (12) from (11),
\[d(u)\beta (m\alpha u\beta - u\beta m) - 2u\beta d(u)\alpha m\beta = 0\)
Multiply (13) by \(u\beta m\) from left and then subtract the results from (14),
\[(u\beta d(u) - m\beta m)\beta (m\alpha u\beta - u\beta m) - 2u\beta (u\beta d(u) - d(u)\alpha m)\beta (m\alpha u\beta - m\beta u\beta) = 0.
Since, \(u\alpha d(u) - d(u)\alpha u\beta = 0\), for all \(u \in U\)
and \(\alpha \in \Gamma\).
Then,
\[m\alpha u\beta - u\beta m\beta - 2u\beta m\alpha - u\beta m = 0\),
for all \(m \in M\).
So, \(m\alpha u\beta - u\beta m\beta - 2u\beta m\alpha - u\beta m = 0\), that is \(u\beta m\alpha - u\beta m\beta = 0\),
That is \(u\) is the center by Lemma 3.2 or else \(u\alpha d(u) - d(u)\alpha u\beta = 0\),
Which in both cases
\[[u, d(u)]_{\alpha} = 0\] for all \(u \in U\) and \(\alpha \in \Gamma\).
The following lemma may have some independent interest.
Lemma 3.6: Let M be a prime Γ-ring of characteristic not 2, U be Jordan ideal of M and d be a nonzero derivation of M. If $u\alpha d(u) = d(u)\alpha u = 0$, for all $u \in U, \alpha \in \Gamma$. Then $U = 0$.

Proof:
Linearizing the relation $u\alpha d(u) = 0$ on $u = u + w$ where $w \in U$ to get,

$$u\alpha d(w) + w\alpha d(u) = 0,$$
for all $u, w \in U$ and $\alpha \in \Gamma$. ... (15)

For $u \in U$ and any $m \in M, \alpha \in \Gamma$,

$$u\alpha (u\alpha m - m\alpha u) + (u\alpha m - m\alpha u)\alpha u \in U.$$

But, $2(m\alpha u\alpha u - \alpha \alpha u\alpha m) =$

$$\{u\alpha (m\alpha u - m\alpha u) + (m\alpha u - m\alpha u)\alpha u\} - \{m\alpha (u\alpha m - \alpha \alpha m) + \alpha \alpha (m\alpha u - m\alpha u)\}$$

As the first and second term on the right hand side are in U,

$$2(m\alpha u\alpha u - \alpha \alpha u\alpha m) \in U.$$

Now since, $2u\alpha \alpha \in U$ and $2(m\alpha u\alpha u - \alpha \alpha u\alpha m) \in U$.

Then, $4u\alpha u\alpha m$ and $4\alpha u\alpha u\alpha m$ are in U.

Replacing w by $4u\alpha u\alpha m$ in (15) and using the hypothesis, we get

$$u\alpha d(m)\alpha u\alpha m = 0,$$
for all $m \in M, u \in U$ and $\alpha \in \Gamma$. ... (16)

Replace w by $m\beta u + u\beta m$ and using the hypothesis, we get

$$u\beta d(m)\beta u + u\alpha m\alpha m + u\beta m\beta m = 0,$$
for all $m \in M, u \in U$ and $\alpha, \beta \in \Gamma$.

Multiply by αu on the right and using the assumption (*) together with equation (16) we obtain

$$u\beta d(m)\beta u\alpha m = 0,$$
for all $m \in M, u \in U$ and $\alpha, \beta \in \Gamma$. ... (17)

Again replace w by $4u\alpha u\alpha m$ in (15), we get

$$u\alpha u\alpha d(m) = 0,$$
for all $m \in M, u \in U$ and $\alpha \in \Gamma$.

Then by Lemma 3.1, we have

$$u\alpha u\alpha = 0,$$
for all $u \in U$ and $\alpha \in \Gamma$.

For $m \in M, u \in U$ and $\alpha \in \Gamma$,

$$2(u\alpha u\alpha m + m\alpha u\alpha u) \in U.$$

That is,

$$2^3[(u\alpha u\alpha m + m\alpha u\alpha u)\alpha] \in (u\alpha u\alpha m + m\alpha u\alpha u) = 0,$$
for all $m \in M, u \in U$ and $\alpha \in \Gamma$.

Multiply from the right side by $u\alpha u\alpha m$ we get

$$2^3[(u\alpha u\alpha m)\alpha] \in 0,$$
for all $m \in M, u \in U$ and $\alpha \in \Gamma$.

If for some $u \in U$ and $\alpha \in \Gamma$, $u\alpha \neq 0$ then $u\alpha u\alpha M$ is a nonzero right ideal of M. Then by Levitzki’s Theorem [13] M would have a nilpotent ideal; which is impossible for prime Γ-ring, hence

$$u\alpha = 0,$$
for all $u \in U$ and $\alpha \in \Gamma$.

By repeating the above argument we can show that $u = 0$, for all $u \in U$.

4. The Main Theorems

Theorem 4.1: Let M be a prime Γ-ring of characteristic different from 2 and 3. Let d be a nonzero derivation of M and U be a Lie ideal of M. If d is Γ-centralizing on U then $U \subset Z$.

Proof:
Since d is Γ-centralizing on U, then by using Lemma 3.5, we have

$$[u, d(u)]_\alpha = 0,$$
for all $u \in U$ and $\alpha \in \Gamma$.

Then by Lemma 3.4, we get

$$[d(m), u]_\beta , u]_\alpha = 0,$$
for all $m \in M, u \in U$ and $\alpha \in \Gamma$. ... (1)

In (1) replace u by $u + w$ where $w \in U$,

$$[d(m), w]_\alpha + [d(m), w]_\alpha u]_\alpha = 0,$$
for all $m \in M, u \in U$ and $\beta \in \Gamma$. ... (2)

Suppose now, $u, w \in U$ are such that $w \alpha v$. Then by replacing w by $w\alpha v$ in (2) we get after using (**),

$$w\alpha [d(m), w]_\beta , v]_\alpha + [d(m), w]_\beta , w]_\alpha v + [d(m), w]_\beta , u]_\alpha v + w\alpha [d(m), v]_\beta , u]_\alpha + [w, u]_\alpha \alpha [d(m), v]_\beta = 0.$$

In view of (2) the last equation reduces to,

$$[d(m), w]_\alpha u]_\alpha + [w, u]_\alpha \alpha [d(m), v]_\beta = 0.$$

Replace v by $[t, w]_\beta$ where $t \in M$ in above equation, we have

$$[d(m), w]_\beta , v]_\alpha + [w, u]_\alpha v = 0,$$
for all $t, m \in M, u \in U$ and $\alpha, \beta \in \Gamma$.

Putting $u = w$ in (3), we have

$$[d(m), w]_\beta , [w, w]_\alpha = 0.$$

(4)

Replace t by $t\alpha d(a)$ in (4) where $a \in M$ yields on expansion and (**).
\[[d(m), w], \beta \alpha [2[t, w], \alpha [d(a), w] + \]
\[[t, w], \alpha \alpha (d(a)) + \alpha [d(a), w], w] = 0. \]
By (4) the second term is zero, while by (1) the third term is zero. Hence
\[[d(m), w], \beta \alpha [t, w], \alpha [d(a), w] = 0, \]
for all \(m, t, a \in M, w \in U \) and \(\alpha \in \Gamma \). \hspace{1cm} ... (5)
Put \(u = [t, w] \) in (3), and linearization it s on \(t = t + d(a) \) where \(a \in M \) together with (1) yields
\[[t, w], w, \alpha [d(a), w], d(m)] = 0, \]
for all \(m, t, a \in M, w \in U \) and \(\alpha \in \Gamma \). \hspace{1cm} ... (6)
Replace \(t \) by \(d(t) \alpha \) where \(p \in M \) in (6) then by expanding we get,
\[[d[t], w], \alpha [p, w], + d(t) \alpha \]
\[[p, w], w], + [d[t], w], w], \alpha \gamma \]
\[+ [d(a), w], \beta = 0. \]
By (6) the second term is zero, while by (1) the third term is zero. Hence
\[[d(t), w], \alpha [p, w], \gamma [d(a), w], \beta = 0. \]
In view of (5), the last equation reduces to,
\[[d(t), w], \alpha [p, w], \gamma [d(a), d(m)] = 0, \]
for all \(p, a \in M, w \in U \) and \(\alpha, \gamma \in \Gamma \).
In (5) replace \(t \) by \(t \alpha(a) \) where \(p \in M \) then by using the last equation, we get
\[[d(m), w], \Gamma M[t, d(p), w], [d(a), w] = 0, \]
for all \(m, a \in M, w \in U \) and \(\alpha, \beta \in \Gamma \).
Since \(M \) is prime either \([d(m), w], \beta = 0 \) or
\[[d(p), w], \alpha [d(a), w] = 0. \]
If for all \(m \in M, w \in U \) and \(\beta \in \Gamma \),
\[[d(m), w], \beta = 0. \]
That is, \(I \Gamma (d(m)) = 0. \)
Then by Lemma 3.1, \(w \in Z \), for all \(w \in U \).
Thus assume there exists a \(w \in U \) such that for some \(m \in M, [d(m), w] \neq 0. \)
That is \(w \notin Z \). Then for all \(a, p \in M, \)
\[[d(p), w], \alpha [d(a), w] = 0. \]
Replace \(a \) by \(b \beta c \) where \(b, c \in M \) then by expanding, we get
\[[d(p), w], \alpha [d(b), w], \beta c + [d(p), w] \alpha \]
\[[d(b), \beta c] + [d(p), w], \alpha [d(c), w] + \]
\[[d(p), w], \alpha [b, w], \beta d(c) = 0. \]
Replace \(b \) by \([t, w] \) where \(t \in M \). Then by
(7) the first term is zero, by (5) the third term is zero and by (4) the fourth term is zero, thus
\[[d(p), w], \alpha [d(t), w] \beta [w, c] = 0. \]
Since, \(d([t, w]) = [d(t), w] + [t, d(w)] \), and using (3), we get
\[[d(p), w], \alpha [t, d(w)] \beta [w, c] = 0, \]
for all \(c, t, p \in M, w \in U \) and \(\alpha, \beta \in \Gamma \).
Replace \(c \) by \(mac \) where \(m \in M \), then
\[[d(p), w], \alpha [t, d(w)] \Gamma M[t, w] = 0. \]
Since \(M \) is prime and \(w \notin Z \), we get
\[[d(p), w], \alpha [t, d(w)] = 0, \]
for all \(t, p \in M, w \in U \) and \(\alpha \in \Gamma \). Thus
\[[d(p), w], \alpha [t, d(w)] = 0, \]
for all \(t, p \in M, w \in U \) and \(\alpha \in \Gamma \). Which in both cases \(d(w) \notin Z \).
Now suppose that \(u \in U \) and \(u \in Z \) then
\[0 = d([u, a]) = [d(u), a] + [u, d(a)] \]
and hence \(d(u) \in Z \). Therefore, \(d(u) \in Z \) for all \(u \in U \). So that,
\[[w, d(a)] \in Z \]
for all \(a \in M \) that is
\[[w, d(a)] \in Z. \]
In particular,
\[[w, d(a)] \in \Gamma \in Z, \]
\[\beta d(w) \in Z. \]
By commuting (6) with \(w \), we get
\[[w, [w, a]] \beta d(w) = 0, \]
for all \(a \in M, w \in U \) and \(\alpha, \beta \in \Gamma \).
If \(d(w) \neq 0 \) and as its in the center \(Z \),
\[[w, [w, a]] \alpha = 0, \]
for all \(a \in M \) and \(\alpha \in \Gamma \).
By sub- Lemma \[14 \] \(w \in Z \) a contradiction. Hence, \(d(w) = 0 \). Thus by (8), we have
\[[w, d(a)] \beta \in Z, \]
for all \(a \in M \) and \(\alpha \in \Gamma \).
That is, \([w, d(a)] \beta w \in Z, \)
for all \(a \in M \) and \(\alpha \in \Gamma \).
Replace \(b \) by \(c a b \) where \(c \in M \), then
\[[d(a), w], \beta [w, b] = 0. \]
By primness of \(M \) we get, either \(w \in Z \) or \([d(a), w] = 0, \) for all \(a \in M \) and \(\alpha \in \Gamma \).
Which we both cases a contradiction Hence, \(w \in Z \) for all \(w \in U \).
Now we should like to settle the problem when \(M \) has characteristic 3. Hence we get the following result.
Theorem 4.2: Let M be a prime Γ-ring of characteristic 3, and d be a nonzero derivation of M, if d is Γ-centralizing on U and $ucau \in U$ then $U \subset Z$.

Proof:

Since d is Γ-centralizing on U then,

By Lemma 3.3 we get d is Γ-commuting on U. Therefore, by similar way of the proof in Theorem 4.1 we can get $U \subset Z$.

Now we show that the conclusion of Theorem 4.1 and Theorem 4.2 holds even if U is Jordan ideal of M.

Theorem 4.3: Let M be a prime Γ-ring of characteristic not 2. Let d be a nonzero derivation of M and U be a Jordan ideal of M if d is Γ-centralizing then $U \subset Z$.

Proof:

Since $2ucau \in U$, then by Lemma 3.3,

$[u,d(u)]_{\alpha} = 0$, for all $u \in U$ and $\alpha \in \Gamma$.

Linearizing the relation $[u,d(u)]_{\alpha} = 0$, on $u = u+v$ where $v \in U$, we get

$[u,(d(v))]_{\alpha} + [v,d(u)]_{\alpha} = 0$, for all $u,v \in U$ and $\alpha \in \Gamma$. ...(9)

In (9), replace v by $u\beta m + m\beta u$ where $m \in M$ then by expanding, we get

$u\beta[u,d(u)]_{\alpha} + [u,d(m)]_{\alpha} + [u,(d(m))]_{\alpha} + [v,d(u)]_{\alpha} + [v,d(m)]_{\alpha} + [v,(d(m))]_{\alpha} + [m,d(u)]_{\alpha} + [m,d(m)]_{\alpha} + [m,(d(m))]_{\alpha} + [m\beta u]_{\alpha} = 0$. i.e.

$2u\beta mcau(u) - 2d(u)cma\beta u + u\beta u(a)d(m) - d(m)ca\beta u = 0$...(10)

Replace m by αm in (10), we get

$d(u)\alpha ca(u)bm\beta u - u\beta u(a)m\beta u = 0$, for all $m \in M, u \in U$ and $\alpha, \beta \in \Gamma$. ...(11)

That is, $d(u)\alpha ca(\alpha m) = 0$, for all $m \in M, u \in U$ and $\alpha, \beta \in \Gamma$.

Hence by Lemma 3.1 we have, either $u\beta u \in Z$ or $d(u) = 0$, for all $u \in U$ and $\alpha, \beta \in \Gamma$.

For $u \in U$ and any $m \in M, \alpha, \beta \in \Gamma$, we have $u\alpha m + m\alpha u \in U$. But,

$4u\alpha m\alpha u = 2(u\alpha (u\alpha m + m\alpha u) + (u\alpha m + m\alpha u)\alpha u) - 2(u\alpha c(u\alpha m + m\alpha c)u\alpha u)$. The first and second term on the right are in U then, $4u\alpha m\alpha u \in U$. Replace v by $u\alpha m\alpha u$ in (9), we get

$ucaucau(u) - d(u)caucau + ucaucau(m) - ucaucau(m)caucau = 0$...(12)

Replace m by αm in (12) and then by using (12) we get,

$ucaucau(u)caucau - ucaucau(m)caucau = 0$.

In view of (11) the last equation reduces to

$ucaucau(u)caucau - ucaucau(m)caucau = 0$.

That is, $ucaucau(u)caucau(m) = 0$.

Then by Lemma 3.1, we have either $ucaucau(m) = 0$ or $U \subset Z$, for all $u \in U$ and $\alpha \in \Gamma$.

In (11), replace u by $u+v$ where $v \in U$ then by using (11), we get

$d(u)\alpha ca[v\beta u + v\beta u, m]_{\alpha} + d(u)\alpha ca[v\beta u, m]_{\alpha} + d(u)\alpha ca[v\beta u, m]_{\alpha} = 0$.

Replace u by $-u$ then,

$-d(u)\alpha ca[v\beta u - v\beta u, m]_{\alpha} - d(u)\alpha ca[v\beta u, m]_{\alpha} + d(u)\alpha ca[v\beta u, m]_{\alpha} = 0$.

Adding the last two equations and dividing by 2, we have

$d(u)\alpha ca[v\beta u + v\beta u, m]_{\alpha} + d(u)\alpha ca[v\beta u, m]_{\alpha} = 0$ for all $m \in M, u,v \in U$ and $\alpha, \beta \in \Gamma$.

By Lemma 3.6 we get $ucaucau(m) = 0$, for some $u \in U, \alpha \in \Gamma, d(u) \neq 0$.

Hence by (12), $u\beta u \in Z$. The net results of this is

$d(u)\alpha ca[v\beta u + v\beta u, m]_{\alpha} = 0$,

for all $m \in M, u,v \in U$ and $\alpha, \beta \in \Gamma$.

That is, $d(u)\alpha ca(u)\beta v + u\beta u(a)m\beta u = 0$,

for all $m \in M, u,v \in U$ and $\alpha, \beta \in \Gamma$.

By Lemma 3.1, $v\beta u + v\beta u \in Z$, for all $u,v \in U$ and $\alpha, \beta \in \Gamma$.

If $ucau = 0$, then

$0 = d(ucau) = ucau + d(u)cau = ucau$.

That is, $ucau = 0$ a contradiction hence $ucau \neq 0$. Now suppose that $ucau = 0$, then $ucaucau(u) = 0$ that is, $d(u) = 0$ a contradiction hence $ucaucau(m) = 0$.

So by (13) $U \subset Z$. Hence $2u\alpha v \in Z$; that is

$2u\alpha v \in Z$ for all $v \in U$ and $\alpha \in \Gamma$.

As $u \neq 0$ we have $v \in Z$ for all $v \in U$.

Hence $U \subset Z$.

We should like to settle the problem even when M has characteristic 2. In this case Lie and
Jordan ideals will coincide.

Theorem 4.4: Let M be a prime Γ-ring of characteristic 2, and let d be a nonzero derivation of M. Let U be Lie (Jordan) ideal and subring of M. If d is Γ-centralizing on U then U is commutative.

Proof:

Since d is Γ-centralizing on U then by Lemma 3.4

$$d(m)\beta uau + uau\beta d(m) \in Z$$ \hspace{1cm} (14)

Commute (14) with $d(m)$ and uau respectively we get,

$$uau\beta d(m)\gamma d(m)\beta uau = d(m)\gamma d(m)\beta uau$$ \hspace{1cm} (15a)

And,

$$d(m)\beta uau\beta uau = uau\gamma uau\beta d(m)$$ \hspace{1cm} (15b)

in (15a) replace m by $v + uau\beta v$ and by using (15 a) we get,

$$uau\beta d(v + uau\beta v)\gamma d(v + uau\beta v) = d(v + uau\beta v)\gamma d(v + uau\beta v)\beta$$

For $u \in U, \alpha \in \Gamma$,

$$d(uau) = uau d(u) + d(u) uau \in Z.$$

So in view of (15b) the last equation reduces to

$$uau\beta d(v)\gamma uau\beta d(v) + d(v)\gamma uau\beta d(v)\beta$$

$uau = 0$, for all $u, v \in U, \alpha \in \Gamma$.

Since M is prime, and by using (14) we get,

$$uau\beta d(v) = d(v)\beta uau, \text{ for all } u, v \in U, \alpha \in \Gamma.$$ \hspace{1cm} (16)

Replace u by $u + w$ where $w \in U$ we get,

$$(uau + wau)\beta d(v) = d(v)\beta (uau + wau)$$

Replace v by vau and by using (*) we have,

$$(uau + wau)\beta (uau + d(v)au) = 0,$$

for all $u, v, w \in U, \alpha, \beta \in \Gamma$. \hspace{1cm} (17)

Linearize the last equation on $u = u + vau$ where $v \in U$ and put $v = u$ then using (16) we get,

$$(vau + wau)\beta (uau + d(u)au) = 0,$$

for all $u, v, w \in U, \alpha, \beta \in \Gamma$.

If $[u, d(u)]_{\alpha} \neq 0$, for some $u \in U$ and $\alpha \in \Gamma$. Then,

$$(vau + wau)\alpha = 0,$$

for all $v, w \in U$ and $\alpha \in \Gamma$. So that,

$$uau(uau + maau) = (uau + maau)uau$$

That is

$$w\alpha(uau + maau) = (uau + maau)\alpha.$$\hspace{1cm} Replace m by mau then

$$(uau + maau)\alpha(wau + uau) = 0,$$

for all $m \in M, u, w \in U$ and $\alpha \in \Gamma$.

Replace w by $[u, t]_{\alpha}$ we get,

$$(uau + maau)\alpha(uau + tmaau) = 0,$$

for all $m, t \in M, u, w \in U$ and $\alpha \in \Gamma$.

Replace t by pau where $p \in M$, then

So that,

$$uau(uau + maau) = (uau + maau)uau$$

That is

$$w\alpha(uau + maau) = (uau + maau)\alpha.$$\hspace{1cm} Replace m by mau then

$$(uau + maau)\alpha(wau + uau) = 0,$$

for all $m \in M, u, w \in U$ and $\alpha \in \Gamma$.

Replace w by $[u, t]_{\alpha}$ we get,

$$(uau + maau)\alpha(uau + tmaau) = 0,$$

for all $m, t \in M, u, w \in U$ and $\alpha \in \Gamma$.
By primness of M we have, $w\alpha v \in Z$ a contradiction. Hence the conclusion is that, so in all possible cases, $w\alpha v \in Z$, for all $u \in U, \alpha \in \Gamma$. So that,

$(u\alpha v + v\alpha u) \in Z$ and $(u\alpha v + v\alpha u)\alpha u \in Z$

If $u \not\in Z(U)$ where $Z(U)$ denotes the center of, then $(u\alpha v + v\alpha u = 0$, for all $v \in U$ and $u \in Z(U)$

Hence U is commutative.

References
