ON CLS-MODULES

Lmyaa H. Sahib*, Bahar H. AL-Bahraany
Department of Mathematics, College of Science, University of Baghdad, Baghdad – Iraq
* Lmyaa82@yahoo.com

Abstract
Let R be a commutative ring with identity and let M be a unital left R-module. A. Tercan introduced the following concept. An R-module M is called a CLS-module if every y-closed submodule is a direct summand. The main purpose of this work is to develop the properties of y-closed submodules.

Keywords: CLS-modules, Y-closed submodules.

1. Introduction
About thirty years ago, M. Harada and B. Muller introduced the following concept. An R-module M is called extending (briefly CS-module) if every submodule is essential in a direct summand of M, see[1]. Equivalently, M is an extending module if and only if every closed submodule of M is a direct summand. Extending modules has been studied recently by several authors. Among them P.F. Smith and Clark and Mohamed see [1, 2].

Now recall that, a submodule N of an R-module M is a y-closed submodule if $\frac{M}{N}$ is non-singular, see[3]. It is easily seen that every y-closed is closed.

A. Tercan generalizes the extending modules as follow: An R-module M is called a CLS-module if every y-closed submodule of M is a direct summand, see[4]. Note that, Tercan used the concepts complement(closed submodule) in the sense of closed submodule (y-closed submodule). CLS-modules also have been studied by Yongduo Wang, see [5].

In this paper, we give some results on y-closed submodules and CLS-modules.

In section one, we study the properties of y-closed submodules. We prove that if $f:M \rightarrow N$ is an epimorphism and $B \subseteq N$, then for every singular submodule A of M, $f(A) \subseteq B$, see proposition 1.4.

In section two of the paper, we give characterizations of CLS-modules. For example, we show that an R-module M is CLS if and only
if for every y-closed submodule A of M, there is a decomposition M=M₁ ⊕ M₂ such that A⊆ M₁ and M₂ is a complement of A in M.

Y-closed Submodule

Proposition(1.1) :
Let M be an R-module and let A⊆ B⊆ M ,then
1- If A⊆ M, then A⊆ y B.
2- Let A ⊆ B ⊆ M ,then B ⊆ y M if and only if
 \(\frac{B}{A} \subseteq y \frac{M}{A} \).
3- A ∩ B ⊆ y B if and only if
 A ∩ B ⊆ y B.
4- If A ∩ y M and B ∩ y M, then
 A ∩ B ⊆ y M.

Proof:
1- Clear.
2- Clear by the third isomorphism theorem.
3- Clear by the second isomorphism theorem.
4- Assume that A ⊆ y M and B ⊆ y M to show that A∩B ⊆ y M ,let m ∈ M such that
 \(m+(A ∩ B) ∈ Z(\frac{M}{A ∩ B}) \).
 Thus ann(m+A ∩ B) ⊆ R. Since
 \(\text{ann}(m+A ∩ B) \subseteq \text{ann}(m+A) \), then
 \(\text{ann}(m+A) ⊆ R \), by [3]. But \(Z(\frac{M}{A}) = 0 \), therefore \(m+\text{ann}(m+A) = A \).
 By the same way \(m+B = B \), so
 \(m ∈ A ∩ B \) and hence \(Z(\frac{M}{A ∩ B}) = 0 \).

Proposition(1.2) :
Let A and B be a submodule of an R-module M if A ⊆ y B and B ⊆ y M , then A ⊆ y M.

Proof:
Let A ⊆ y B and B ⊆ y M. Now consider the following short exact sequence:

\[
0 \rightarrow \frac{B}{A} \rightarrow \frac{M}{A} \rightarrow \frac{A}{B} \rightarrow 0
\]

Where i is the inclusion map and π is the natural epimorphism. Since A ⊆ B and

B ⊆ M, then \(\frac{B}{A} \subseteq \frac{M}{A} \) by proposition 1.1-2.

Since \(\frac{B}{A} \) and \(\frac{M}{A} \) are non-singular, then \(\frac{M}{A} \) is non-singular by [3].

Note:
Let M be an R-module and A ⊆ B ⊆ M, then
1- If B ⊆ y M, then A need not be y-closed submodule of M, for example:
 Consider Z as Z-module and
 \(2Z ⊆ Z \) it is clear that Z ⊆ y Z. But
 \(Z(\frac{Z}{2Z}) = Z(Z_2) = Z_2 \) is singular.
2- If A ⊆ y M, then B need not be y-closed in M, for example:
 \(0 ⊆ 2Z \subseteq Z \) Clearly 0 ⊆ y Z, but
 \(Z(\frac{Z}{2Z}) = Z(Z_2) = Z_2 \) is singular.

Note:
An epimorphic image of an y-closed submodule need not be y-closed submodule as the following example show:-

Let \(\pi : Z \rightarrow \frac{Z}{4Z} \) be the natural epimorphism
 Clearly 0 ⊆ y Z, but \(f(0) = 0 \) is not y-closed in
 \(\frac{Z}{4Z} \) (because \(\frac{Z}{4Z} \) is singular).

Proposition(1.3) :
Let f:M → N be an epimorphism and A ⊆ y M. If Ker f ⊆ A, then f(A) ⊆ y N.

Proof:
Assume that A ⊆ y M. To show that
f(A) ⊆ y N, let n → N such that
\(\text{ann}(n+f(A)) \subseteq R \). Since f is an epimorphism, then \(n = f(m) \), for some m ∈ M. Since
Ker f ⊆ A, then \(\text{ann}(n+f(A)) \subseteq \text{ann}(m+A) \) and hence \(\text{ann}(n+f(A)) ⊆ R \), by [3]. But A ⊆ y M, therefore m ∈ A. Thus n = f(m) ∈ f(A).

Proposition(1.4):
Let f:M → N be an R-homomorphism and B ⊆ y N, then for every singular submodule A of M, f(A) ⊆ B.
Proof:
Let \(\pi : N \to \frac{N}{B} \) be the natural epimorphism.

Consider \(\pi \circ f : M \to \frac{N}{B} \).

Now \(\pi \circ f |_A : A \to \frac{N}{B} \)

But \(A \) is singular and \(\frac{N}{B} \) is non-singular,

Therefore \(\pi \circ f |_A = 0 \), by [3]. Thus \(\pi(f(A)) = 0 \)

And hence \(f(A) \subseteq \ker \pi = B \).

The following corollary follows immediately from proposition\{ 1.4 \}.

Corollary (1.5):
Let \(N \) be an \(R \)-module and \(A \subseteq \frac{1}{y}N \). Then \((\text{HOM}(M,N))(M) \subseteq B \), for every singular \(R \)-module \(M \).

Proposition (1.6):
Let \(M \) be an \(R \)-module and \(A \subseteq \frac{1}{y}M \), then \(Z(M) = Z(A) \).

Proof:
It is enough to show that \(Z(M) \subseteq Z(A) \)

Let \(i : Z(M) \to M \) be the inclusion map and

\(\pi : M \to \frac{M}{A} \) be the natural epimorphism.

Consider the map \(\pi \circ i : Z(M) \to \frac{M}{A} \)

Since \(Z(M) \) is singular and \(\frac{M}{A} \) is non-singular, then \(\pi \circ i = 0 \), by [3]. So \(\pi \circ i : (Z(M)) = \pi \circ (Z(M)) = 0 \).

Thus \(Z(M) \subseteq \ker \pi = A \). But \(Z(A) = Z(M) \cap A \),

Therefore \(Z(A) = Z(M) \).

Proposition (1.7):
Let \(M \) be an \(R \)-module and let \(A \subseteq B \subseteq M \)

and \(A \subseteq \frac{1}{y}M \), then \(\frac{M}{B} \) is singular if and only \(B \subseteq e \frac{M}{e} \).

Proposition (1.8):
Let \(M \) be an \(R \)-module and \(B \) be a maximal and \(y \)-closed submodule of \(M \). Then \(\frac{M}{B} \) is projective and \(B \) is a direct summand of \(M \).

Proof:
Since \(B \) is maximal submodule of \(M \), then \(\frac{M}{B} \) is simple and hence semisimple. But \(\frac{M}{B} \) is non-singular, therefore \(\frac{M}{B} \) is projective, by [3].

Now consider the following short exact sequence:

\[
0 \to B \xrightarrow{i} M \xrightarrow{\pi} \frac{M}{B} \to 0
\]

Where \(i \) is the inclusion map and \(\pi \) is the natural epimorphism.

Since \(\frac{M}{B} \) is projective, then the sequence is splits, by [6]. Thus \(B \) is a direct summand of \(M \).

Let \(M \) be an \(R \)-module and \(N \subseteq M \). Recall that the residual of \(M \) in \(N \) (denoted by \([N:M]\)) is defined as follows:

\[
[N:M] = \{ r \in R : rM \subseteq N \}, \text{ see } [7]
\]

Proposition (1.9):
Let \(M \) be an \(R \)-module and \(N \subseteq \frac{1}{y}M \), then \([N:M] \subseteq \frac{1}{y}R \).
Proof:
Let \(N \subseteq M \). Assume that \([N:M]\) is not y-closed in \(R \). So there exists \(r \in R \) such that
\[[N:M] \neq r + [N:M] \in \mathbb{Z}\left(\frac{N}{[N:M]} \right) . \]
Thus \(rM \not\subseteq N \) and hence \(\exists m_0 \in M \) such that \(rm_0 \not\in N \). One can easily show that
\[\text{ann}(r + [N:M]) \subseteq \text{ann}(rm_0 + N) \]. Since
\[\text{ann}(r + [N:M]) \subseteq R, \text{ then ann}(rm_0 + N) \subseteq R \]
But \(M \) is non-singular, therefore \(m_0 + N = N \).
Which is contradiction.

Proposition(1.10):
Let \(M \) be an R-module and let \([B_\alpha, \in \wedge \)] be an independent family of submodules of \(M \) and \(A \subseteq B_\alpha \), \(\forall \alpha \in \wedge \). Then \(\bigoplus A_\alpha \subseteq \bigoplus B_\alpha \) if and only if \(A_\alpha \subseteq B_\alpha \), \(\forall \alpha \in \wedge \).

Proof:
Suppose that \(\bigoplus A_\alpha \subseteq \bigoplus B_\alpha \)
\[\bigoplus B_\alpha \cong B_\alpha \]
Then by \([3]\)
\[A_\alpha \subseteq B_\alpha, \forall \alpha \in \wedge \].
Conversely, \(A_\alpha \subseteq B_\alpha, \forall \alpha \in \wedge \).
Then \(B_\alpha \) is non-singular, \(\forall \alpha \in \wedge \).
and hence
\[\bigoplus B_\alpha \]
\[\bigoplus A_\alpha \]
\[\subseteq \bigoplus B_\alpha \]
\[\subseteq \bigoplus A_\alpha \]
But \(\bigoplus A_\alpha \cong \bigoplus B_\alpha \), by \([8]\), so
\[\bigoplus A_\alpha \subseteq \bigoplus B_\alpha \] .

1. Characterizations of CLS-modules
 Following \([4]\), we say that an R-module \(M \) is a CLS-module if every y-closed submodule is a direct summand.
 It is know that a direct summand of a CLS-module is CLS, see \([4]\).
 We prove the following:

Proposition(2.1):
Every y-closed submodule of CLS-module is CLS.

Proof:
Let \(M \) be a CLS-module and \(A \subseteq M \). We want to show that \(A \) is a CLS-module. Let \(K \subseteq A \), then by proposition \([1.2]\) \(K \subseteq M \). But \(M \) is CLS, therefore \(K \) is a direct summand of \(M \) and hence \(K \) is a direct summand of \(A \).

Proposition(2.2):
Let \(M \) be a CLS-module and \(N \) be a submodule of \(M \), then \(\frac{M}{N} \) is a CLS-module.

Proof:
Let \(\frac{B}{N} \subseteq \frac{M}{N} \). Then by proposition \([1.1-2]\) \(B \subseteq M \). But \(M \) is CLS, therefore
\(M = B \oplus K, K \subseteq M \). Since \(N \subseteq B \), then one can easily show that \(\frac{M}{N} = \frac{B}{N} \oplus \frac{K + N}{N} \). Thus \(\frac{M}{N} \) is CLS-module.
Recall that a module \(M \) is called generalized extending if for any submodule \(N \) of \(M \), there is a direct summand \(K \) of \(M \) such that \(N \subseteq K \) and
\[\frac{K}{N} \]
is singular, see \([9]\).

Proposition(2.3):
Let \(M \) be a generalized extending R-module, then \(M \) is CLS.

Proof:
Let \(N \subseteq M \). Since \(M \) is generalized extending, then there exists a direct summand \(K \) of \(M \) such that \(N \subseteq K \) and
\[\frac{K}{N} \]
is singular. But
\[\frac{K}{N} \subseteq \frac{M}{N} \]
is non-singular. Thus \(K = N \).

Proposition(2.4):
An R-module \(M \) is a CLS-module if and only if for every y-closed submodule \(A \) of \(M \), there is a decomposition \(M = M_1 \oplus M_2 \) such that \(A \subseteq M_1 \) and \(M_2 \) is a complement of \(A \) in \(M \).

Proof:
Let \(A \subseteq M \) then by our assumption, there exists a decomposition of \(M \) into two submodules \(A \subseteq M_1 \) and \(M_2 \) is a complement of \(A \) in \(M \). So
\[A \oplus M_2 \subseteq M \], by \([3]\). Thus \(A \subseteq M_1 \) by \([3]\) and
\[M_1 \]
\[\subseteq \frac{M}{N} \]
is singular. But \(A \subseteq M_1 \) and
\[A \subseteq M_1 \]
therefore \(A \subseteq M_1 \), by Proposition \([1.1-1]\) . Thus \(A = M_1 \).

Proposition(2.5):
An R-module \(M \) is CLS-module if and only if every y-closed submodule of \(M \) is essential in a direct summand.

Proof:
\(\Rightarrow \) Clear.
Since R is projective, then Ra is a direct summand of M. Thus $\frac{D}{A}$ is singular.

But $\frac{D}{A} \subseteq \frac{M}{A}$, therefore $\frac{D}{A}$ is non-singular. Thus $A=D$ and hence M is CLS.

Proposition (2.6):
An R-module M is CLS-module if and only if for every γ-closed submodule A of M there exists a decomposition $M=M_1 \oplus M_2$ such that $A \subseteq M_1$ and $A \oplus M_2 \subseteq M$.

Proof:
\[\Rightarrow \) Clear.
\[\Leftarrow \) Let $A \subseteq \gamma M$, we want to show that A is a direct summand of M. Since $A \subseteq \gamma M$, then by assumption there exists a decomposition $M=M_1 \oplus M_2$ such that $A \subseteq M_1$ and $A \oplus M_2 \subseteq M$.

So $\frac{M}{A \oplus M_2}$ is singular by [3]. But $A \subseteq M_1$ and $A \subseteq M_1 \oplus M_2$, therefore by proposition (1.1-1) $A \subseteq M_1$. Since $M_2 \subseteq M_2$, then by proposition (1.10) $A \oplus M_2 \subseteq M_1 \oplus M_2 = M$. So $\frac{M}{A \oplus M_2}$ is singular. Thus $M = A \oplus M_2$.

Proposition (2.7):
An R-module M is CLS-module if and only if for every direct summand A of the injective hull $\text{E}(M)$ of M such that $A \bigcap M \subseteq \gamma M$, then $A \bigcap M$ is a direct summand of M.

Proof:
\[\Rightarrow \) Clear.
\[\Leftarrow \) Let $A \subseteq \gamma M$ and let B be a relative complement of A, then by [3]

$A \oplus B \subseteq \gamma M$. Since $M \subseteq \gamma E(M)$, then $A \oplus B \subseteq \gamma E(M)$. Thus $E(A) \oplus E(B) = E(A) \oplus E(B) \subseteq E(M)$. Since $E(A)$ is a summand of $E(M)$, then by our assumption $E(A) \bigcap M$ is a summand of M. Now $A \subseteq E(A)$ and $M \subseteq M$, thus by [3]

$A = A \bigcap M \subseteq E(A) \bigcap M$. Hence by proposition (2.5), M is CLS.

Proposition (2.8):
Let R be a ring, then R is a CLS-module if and only if every cyclic non-singular R-module is projective.

Proof:
Let R be a CLS-ring and $M = Ra$, $a \in M$ be a nonsingular R-module. Now consider the short exact sequence.

$0 \rightarrow \text{ann}(a) \rightarrow R \xrightarrow{f} Ra \rightarrow 0$

Where i is the inclusion homomorphism and f is a map defined by $f(r) = ra, r \in R$. Clearly that f is an epimorphism and $\ker f = \text{ann}(a)$. Then by first isomorphism theorem, $\frac{R}{\text{ann}(a)} \cong Ra$. But Ra is non-singular, therefore $\text{ann}(a) \subseteq R$.

Since R is CLS, then $\text{ann}(a)$ is a direct summand of R, so the sequence is split. Thus by [6] $R \cong \text{ann}(a) \oplus Ra$. Since R is projective, then Ra is projective by [6].

Conversely, let A be a γ-closed ideal in R, then $\frac{R}{A}$ is non-singular. Since R is cyclic, then $\frac{R}{A}$ is cyclic. By our assumption $\frac{R}{A}$ is projective. Now consider the following short exact sequence:

$0 \rightarrow A \xrightarrow{i} R \xrightarrow{\pi} \frac{R}{A} \rightarrow 0$

Where i is the inclusion homomorphism and π is the natural epimorphism, since $\frac{R}{A}$ is projective, then the sequence is split by [6]. Thus A is a summand of R. It is well known that a direct sum of CLS-modules need not to be a CLS-modules, see [4], so we give some conditions under which this relation is true.

Proposition (2.9):
Let M and N be CLS-modules such that $\text{ann}M + \text{ann}N = R$, then $M \oplus N$ is CLS.

Proof:
Let A be a γ-closed submodule of $M \oplus N$. Since $\text{ann}M + \text{ann}N = R$, then by the same way of the prove [11, prop. 4.2, CH. 1], $A = C \oplus D$, where C is a submodule of M and D is a submodule of N.

Since $A = C \oplus D \subseteq M \oplus N$, then C and D are γ-closed submodule in M and N respectively by proposition (1.10).

But M and N are CLS-modules, therefore C is a summand of M and D is a summand of N. So $A = C \oplus D$ is a summand of $M \oplus N$. Thus $M \oplus N$ is a CLS-module.
Recall that a submodule N of R-module M is
called a fully invarientsubmodule of M, if for
every endomorphism f:M → M,
\(f(N) \subseteq N \), see[11].

Proposition(2.10):
Let M= \(\oplus M_i \) be an R-module ,such that every
y-closed submodule of M is fully invariant ,then
M is CLS if and only if M_i is CLS \(\forall \ i \in I \).
Proof:
⇒ Clear .
⇒) let S be a y-closed sub module of M .
For each \(i \in I \), let \(\pi_i : M \rightarrow M_i \) be the projection
map .Now Let x ∈ S ,then \(x = \sum_{i \in I} m_i \), \(m_i \in M_i \)
and \(m_i = 0 \) for all but finite many element of \(i \in I \).
\(\pi_i(x) = m_i, \forall i \in I \)
Since S is y-closed submodule, then by our
assumption , S is fully invariant
and hence \(\pi_i(x) = m_i \in S \cap M_i \),So \(x \in \bigoplus (S \cap M_i) \).
Thus \(S \subseteq \bigoplus (S \cap M_i) \).
But \(\bigoplus (S \cap M_i) \subseteq S \),therefore \(S = \bigoplus (S \cap M_i) \).
Since \(S \subseteq M_i \) then by proposition (1.10)
\((S \cap M_i) \) is a direct summand of \(M_i \)
Thus S is a direct summand on M
Recall that an R-module M is called a
distributive module if
\(A \cap (B+C) = (A \cap B) + (A \cap C) \), for all
submodules A,B and C of M, see[12].

Proposition(2.11):
Let \(M = M_1 \oplus M_2 \) be distributive R-
module. Then M is CLS if and only if \(M_1 \)
and \(M_2 \) are CLS.
Proof:
⇒) Clear.
⇒ K \(\subseteq \gamma \), M.Since M=M_1 \(\oplus M_2 \), then
K = K \(\cap (M_1 \oplus M_2) \). But M distributive ,
therefore K=(K \(\cap M_1 \) \(\oplus (K \cap M_2) \).by
proposition(1.10) K \(\cap M_1 \subseteq M_1 \) and
K \(\cap M_2 \subseteq M_2 \).
Since \(M_1 \)and \(M_2 \) are CLS, then
(K \(\cap M_1 \)) is a direct summand of \(M_1 \), and
(K \(\cap M_2 \)) is a direct summand of \(M_2 \)
Clearly that K=(K \(\cap M_1 \) \(\oplus (K \cap M_2) \) is a direct
summand of M.

References
1. Dungh ,N.V.,D.V.Huynh,P.F.Smith and
R.Wisbauer,1994,Extending
Modules,PitmanResearch Notes in
Mathematics Series 313,Longmon,New
York.
2. Mohamed, S.H. and B.J.Muller, 2008,
Continuous and Discrete
Modules,London Math.Soc.LNS,147
Cambridge Univ.Press,Cambridge.
3. Goodearl ,K., 1976,Ring Theory,Non
Singular Rings and
Modules,MarcelDekker,New York.
5. Yongduo Wang,2010, When an y-closed
submodule is a direct summand ,Math R.A.
Press, London.
7. Larsen ,M.D.,P.J.McCarthy,1971,
Multiplicative Theory of ideals,
8. JonaThanS.Golan and Tom head,2007,
Modules and Structure of Rings.
Extending Modules,Journal of Zhejiang
University Science A,TSSN 1673-565
X(print);Issn 1862-1755 (on line).
Extending Modules,M.Sc.Thesis,College
of Science,University of Baghdad.
Modules,Ph.D.Thesis, University of
Baghdad.