Using of safflower (*Cartamus tinctorius*) Seeds extract for white soft Cheese manufacturing

S.M.Abdul- Rahman
College of Agric- Univ. of Baghdad –Iraq.

KeyWords:
Safflower , extract , cheese

Correspondence:
S.M.Abdul- Rahman
College of Agric-Univ. of Baghdad

Received: 30-12-2012
Accepted: 19-3-2013

ABSTRACT

Safflower seeds extract were searched as appropriate substitute in cheese making as an alternative to commercial rennet to manufacture white soft cheese . The chemical cheese analysis includes pH and the percentage content of moisture , Fat , Protein , acidity , ash . and Yield of cheese . Use of rennet to manufacture soft cheese was served as a control . Results and statistical analysis indicated that there was no significant differences in moisture , Fat , pH and titrable acidity .The type of coagulant had significant effect on percentage of protein, ash and Yield which reached 13.75 % , 3.66% and 12.73 % respectively for cheese made by safflower seeds extract and 11.3 % ,4.11% ,13.8 % for cheese produced conventionally. Sensory evaluation showed that cheese produced by safflower seeds was excellent with desirable flavor and high quality , without bitterness or undesirable flavor after production immediately and after storage period for 14 days .No significant differences was observed in sensory characteristics between the two type of cheeses thus the enzymatic extract from safflower seeds was convincing and suitable to manufacture soft cheese from cow’s milk .
The manuscript discusses the antibacterial activities of various fungi such as *Cryphonectria parasitica*, *Mucor miehei*, *Bacillus subtilis*, and *Shigemitsu* in the control of bacterial and fungal infections. The results show that *Cryphonectria parasitica* and *Mucor miehei* are effective against *Bacillus subtilis* and *Shigemitsu*, respectively. These findings support the use of these fungi in agricultural applications for the control of bacterial and fungal infections.

The manuscript also discusses the role of rennet in the cheese-making process and its effects on the microbial community. The rennet is produced by *Meito rennet* and is used in the production of cheese. The manuscript also discusses the role of *Ficus* sp. in the production of cardosins and its role in the cheese-making process.

Overall, the manuscript provides valuable information on the use of fungi and rennet in the control of bacterial and fungal infections and their role in the cheese-making process.
التحليل الإحصائي

التركيب الكيميائي

قدر التحليل الكيميائي للبنج بعد يوم من التصنيع تبعا للطرق القائمة المذكورة في (AOAC) (1990) والتي شملت النسب المولية لـ pH، البروتينات، الملح، الزئبق. الأدوات المستخدمة لـ pH micro Kieldahl (Babcock، 1981)، والدهون (طريقة Tarib). كما قومت الخواص الحيوية بتحديد بنج اعتماد 10 درجات للصفانتراكمية والمتضمنة اللون، النكهة، القوام والتماسك بعد مرور 1، 7، 10، 14 يوم من خزين البنج في أكياس نايلون في الثلاجة.

جدول (1) الفعالية التخثرية لمستخلص بذور العصفر والمرحلة الغدبية

<table>
<thead>
<tr>
<th>المختبر</th>
<th>المنحلة الفطرية (وحدة/مل)</th>
<th>منحلة الفطرية</th>
<th>مستخلص بذور العصفر</th>
</tr>
</thead>
<tbody>
<tr>
<td>العطالية التخثرية</td>
<td>100</td>
<td>320</td>
<td>15.1</td>
</tr>
<tr>
<td>منحلة الفطرية</td>
<td>% من المنحلة التجارية</td>
<td>المختبر</td>
<td>منحلة الفطرية</td>
</tr>
<tr>
<td>العطالية التخثرية</td>
<td>100</td>
<td>320</td>
<td>15.1</td>
</tr>
<tr>
<td>مستخلص بذور العصفر</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

التركيب الكيميائي

يجب جدول (2) التحليل الكيميائي للبنج الأبيض الطاري المصنع بواسطة مستخلص بذور العصفر والمرحلة الفطرية. وقد عكس التحليل الإحصائي عدم وجود اختلافات معنوية بين نوعي البنج فيما يتعلق بالنسبة المولية، الحمضية، الدهن، السكري. وفقاً لجامعة Talib (2009)، والذي تصل إلى أن مستخلص بذور Solanum dubium عدد من الحمضيات من بذور البنج وصغرة، وقد توافق مع النتائج. كانت أقل من رطوبة جنس المنحلة الحيوانية، وقد يعود اختلاف نسبة الرطوبة إلى تباين قابلية الخائرة على الاحتفاظ بالماء. وقد أظهر تأثير نسبة الرطوبة على النسبة المولية للكلوريد، حيث تدهر الرطوبة من اهم العوامل المثيرة على نسبة الكلوريد، فريقها أو Ahmed و Abdul El – Gawad (2011) وجدوا أن تناول البنج المصنوع بالمستخلص الخام لـ 7.50 (p ≤ 0.05) مما في جين المقارنة. نسب البنج المصنوع بالمستخلص الخام لـ 7.50 (p ≤ 0.05) مما في جين المقارنة.

جدول (2) التحليل الكيميائي للبنج الطاري المصنوع باستخدام مستخلص بذور العصفر والمرحلة الفطرية

<table>
<thead>
<tr>
<th>LS</th>
<th>SE</th>
<th>المنحلة الفطرية</th>
<th>مستخلص بذور العصفر</th>
<th>المكونات الكيميائية</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>1.09</td>
<td>a 62.86</td>
<td>a 61.54</td>
<td>الرطوبة %</td>
</tr>
<tr>
<td>NS</td>
<td>0.68</td>
<td>a 17.50</td>
<td>a17.00</td>
<td>الدهن %</td>
</tr>
<tr>
<td>**</td>
<td>0.35</td>
<td>b11.31</td>
<td>a13.75</td>
<td>البروتين %</td>
</tr>
<tr>
<td>NS</td>
<td>0.02</td>
<td>a 0.16</td>
<td>a 0.18</td>
<td>الحمضية %</td>
</tr>
<tr>
<td>NS</td>
<td>0.08</td>
<td>a 6.22</td>
<td>a 6.05</td>
<td>pH</td>
</tr>
<tr>
<td>*</td>
<td>0.02</td>
<td>a 4.11</td>
<td>b 3.66</td>
<td>الرطوبة %</td>
</tr>
<tr>
<td>*</td>
<td>0.31</td>
<td>a 13.30</td>
<td>b 12.73</td>
<td>الدهن %</td>
</tr>
</tbody>
</table>

NS: عدم وجود فرق معنوي. * وجود فرق معنوي عند مستوى احتمالية 0.05. ** وجود فرق معنوي عند مستوى احتمالية 0.01

41
التكقييم الحمضي

لم تتأثر نسبة الدهن في نبات الخنجر معيارياً بذور البذور، حيث وصلت النسبة 17.5% في النباتات التجارية بينما كانت نسبة البذور في النبات المصبوغ بذور البريول، وكمثل أن البروتينات في النبات المصبوغ بذور البريول النجع، وكمثل أن البروتينات (0.75 %) في النبات المصبوغ بذور البريول (13.13 %) وكمثل أن النباتات (1994) أخذ سجل 14% نسبة البروتينات في النبات المصبوغ بذور البذور، وكمثل أن العلاقة العرضية.
جدول (3) التقييم الحسي للجين الطري المنتج من المستخلص الخام لبذور العصفور ومن المنحة القطرية

<table>
<thead>
<tr>
<th>LS</th>
<th>SE</th>
<th>المنحة القطرية</th>
<th>مستخلص بذور العصفور (بالأيام)</th>
<th>الصفة</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>0.00</td>
<td>10 a</td>
<td>10a</td>
<td>اللون</td>
</tr>
<tr>
<td>NS</td>
<td>0.00</td>
<td>10a</td>
<td>10a</td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>0.04</td>
<td>10a</td>
<td>9a</td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>0.03</td>
<td>9a</td>
<td>8a</td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>0.00</td>
<td>8a</td>
<td>8a</td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>0.00</td>
<td>10a</td>
<td>10a</td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>0.00</td>
<td>10a</td>
<td>10a</td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>0.00</td>
<td>9a</td>
<td>9a</td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>0.04</td>
<td>8a</td>
<td>9a</td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>0.04</td>
<td>10a</td>
<td>9a</td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>0.04</td>
<td>10a</td>
<td>9a</td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>0.01</td>
<td>9a</td>
<td>8.5a</td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>0.03</td>
<td>9a</td>
<td>8a</td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>0.00</td>
<td>8a</td>
<td>8a</td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>0.00</td>
<td>10a</td>
<td>10a</td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>0.00</td>
<td>10a</td>
<td>10a</td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>0.04</td>
<td>10a</td>
<td>9a</td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>0.00</td>
<td>9a</td>
<td>9a</td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>0.04</td>
<td>9a</td>
<td>8a</td>
<td></td>
</tr>
</tbody>
</table>

* : وجود فرق معنوي عند مستوى احتمالية 0.05< P

المصادر

