Osteopetrosis Manifesting As a Femoral Fracture in Childhood: A Case Report

Mahdi Abdul Sahib
Orthopedic surgeon / Director of Continuous Medical Education Center / Holly Karbala Health Directorate / Karbala / Iraq

Abstract

Osteopetrosis is a genetically determined bone disease that develops as a result of malfunction of osteoclastic activity leading to excessive deposition of immature bone, thickening of cortical bones and narrowing of the medullary cavities. The condition is rare; the overall incidence is estimated to be 2-10 per million populations. We report a 9-years old child with osteopetrosis presented as pathological femoral fracture. The clinical characteristics together with the negative family history, radiological findings of generalized osteosclerosis and laboratory results (mild anemia) suggest that our patient probably fits in to the intermediate autosomal recessive group of osteopetrosis. Management presents a unique technical challenge in these patients because it often resulted in complications including blunting or breakage of drill bits, intraoperative fractures, delayed healing, nonunion and postoperative infections. This report highlights for technical difficulties during surgery and, hence, prolonged operative time; therefore, preoperative planning is mandatory in the management of fracture in osteopetrotic bone.

Introduction

Osteopetrosis (also known as ivory bones, marble bones, Albers-Schönberg disease) is a genetically determined bone disease that develops as a result of malfunction of osteoclastic activity leading to excessive deposition of immature bone, thickening of cortical bones and narrowing of the medullary cavities (1). The condition is rare, the overall incidence is estimated to be 2-10 per million population and is most frequent in Costa Rica (2-11), first described as a distinct entity by German radiologist Albers-Schoenberg in 1904. Approximately 300 cases of osteopetrosis have since been reported in the medical literature (12-15).
Osteopetrosis presents with various symptoms and heterogeneous severity, from asymptomatic to fatal in infancy and has been classified into:

1. **Autosomal dominant Osteopetrosis (tarda)** which is a rare condition in which patients aren't diagnosed until adulthood and life expectancy is normal. Patients with this type are characterized by short stature, either asymptomatic or with symptoms in form of fragile bones that fracture easily, pain and degenerative arthritis, tendency to develop osteomyelitis and normal hematopoiesis.

2. **Infantile autosomal recessive form of osteopetrosis (malignant)**. Patients with this type have neurological symptoms, hematologic abnormalities, and infection. Patients most often die during early childhood.

3. **Intermediate autosomal-recessive type of osteopetrosis** is characterized by a milder course. Although this form is found in children less than 10 years of age but it usually does not lead to an early death. The patients of this group are often characterized by mild disproportionate short stature, macrocephaly, recurrent fractures, osteomyelitis and mild anaemia (2, 3, 7, 16, and 17).

This case report is of osteopetrosis with pathological femoral fracture.

Case report

In April 15, 2010 a 9-years old Iraqi child from Al-Hindyia in Karbala presented to the private clinic with a fracture of left femur due to a fall by relatively simple obstacle. Other than the last fracture he was without any problem neither orthopedic nor others. On physical examination the patient looked smaller for his age, with bossing forehead and malformed teeth (figure1). Mentality was normal and no hepatosplenomegally.

X-ray of left femur showed short oblique fracture of upper third with abnormal increased bone density, metaphyseal widening and no differentiation between the cortex and the medulla giving chalk like appearance (Figure 2).

Skeletal survey reveals generalized bone sclerosis affecting the skull, spine, pelvis and appendicular bones. (Figures 3)
No family member was a known case of any bone disorder but, unfortunately, they refused to obtain radiographs for them. Laboratory assessment of the child included hemoglobin of 9 g/dl, W.B.C was 11.000 / c. mm. serum electrolytes, calcium and alkaline-phosphates were normal. The patient was admitted to the hospital. At first a pint of blood was given to correct the anemia. Under general anesthesia, open reduction through lateral approach and internal fixation of the fracture using plate and 6-screws was done in April 16, 2010.

The bone was hard, dense and the bone ends showed absent intramedullary canal (i.e. chalk-like consistency making drilling not as easy as in normal bone of similar age) (figure 4). The technique was by using a series of progressively larger drill bits, starting by 2 mm caliber drill followed by 3.2 mm drill then 4.5 mm tapping after that inserting the proper length of cortical screws, making operative time (about 75 minutes) slightly longer than the usual for such operation. No significant increase in blood loss was noted. The wound was closed and suction drain left.

The immediate postoperative course was uneventful; the patient was a febrile, and after two days the drain was removed and the patient was discharged to complete his course of antibiotics at home. On the tenth postoperative day, the wound was clean and the stitches were removed, and with thigh splint, allowing for ambulation with crutches, with non-weight bearing on his left lower extremity.
Discussion

The clinical characteristics (short stature) together with the negative family history, radiological findings of generalized osteosclerosis and laboratory results (mild anemia) suggest that our patient probably fits in to the intermediate autosomal recessive group of osteopetrosis.

For me this is the second patient of osteopetrosis I have seen during the 26-years of my practice in orthopedics; but the first was asymptomatic and discovered incidentally on X-rays.

To my knowledge, this is the first case of pathological femoral fracture presentation of osteopetrosis reported in Karbala. In 2009, Dr. Hussein Jassim AlKhateib has diagnosed one case in Iraq, male aged 8 years presented with generalized skeletal osteopetrosis associated with polyurea, polydepsia with neck stiffness and fever. No other published case report about osteopetrosis in Iraq could be found.

Orthopedic importance in osteopetrosis is related to:-

1. The characteristic brittle “marble bone” in which pathological fractures are the main presenting feature of intermediate autosomal recessive. Femoral fractures being the most frequent site (mostly in proximal shaft), as seen in the fracture of our patient.

2. A reduced marrow space results in decrease in hematopoiesis. Extramedullary hematopoiesis occurs but is unable to compensate for the reduction in medullary blood cell production resulting in thrombocytopenia and anaemia as found in this patient.

3. There is a paucity of literature on the optimal management of fractures in osteopetrotic bone. Management presents a unique technical challenge and orthopedic surgery is difficult in these patients because often resulted in complications including blunting or breakage of drill bits, intraoperative fractures, delayed healing, nonunion, postoperative infections and prosthesis loosening.

The possible pitfalls with plate and screws are breakage of the drill and insecure hold screws.

While osteopetrotic bone may be penetrated with a drill bit, but the drill bit flutes are immediately filled with bone and this renders the drill ineffective, and generation of significant frictional heat can result in breakage of the drill. This explains why the operative time in our patient was longer than usual because more patience and extreme care were needed to avoid both breakage of drill bits and iatrogenic fracturing the brittle bone. The hardness and fragility of the bone combined with a biomechanical inability to securely hold screws add to further difficulties for successful treatment by plate and screws.

Regarding intramedullary fixation, obliteration of the canal and hardness of the bone make difficulty in identifying and opening the canal intraoperative for inserting standard intramedullary fixation in osteopetrotic patient. Ashby also found that drilling and reaming of the medullary canal to be difficult and time consuming. It takes an average of 2 - 4 hours longer than a standard intramedullary nailing. Jones and Hung broke 2 drill bits while fashioning the medullary canal. Chhabra et al used a series of progressively larger drill bits to overcome this difficulty and despite this caution, several drill bits break during the procedure. Matsumo used high-speed burrs to prepare the femoral canal.

The lack of elasticity of osteopetrotic bones probably accounts for iatrogenic fractures during surgery. In 1992, Ashby reported iatrogenic comminution of distal fragment, which occurred while driving the intramedullary nail into the newly formed canal. This difficulty emphasizes the overall fragility of the bone in patients with osteopetrosis despite the bone's hardness and resistance to drilling and reaming.

To avoid possible fracture or perforation, Reagon et al used instruments made from
tungsten carbide (especially femoral reamers and drills) with considerable effort, great care and under radiographic control. The metal properties of tungsten carbide are ideal because it is harder, has greater resistance to wear, and is less prone to fracture than stainless steel\(^{(10)}\).

The only report of external fixation of an osteopetrotic bone by Belz et al in 1988, which used a uniplanar external fixation for femoral shaft fracture applied via six lateral femoral pins. The patient demonstrated complete osseous union of the fracture with removal of the external fixator at 13 weeks.

Fractures heal, but the healing time is often prolonged \(^{(21)}\). Yang et al \(^{(3)}\) in 1980 noted satisfactory callus formation after nine months postoperatively in a 21 year-old woman with osteopetrosis with a left femoral subtrochanteric fracture.

Dense, poorly vascularized bones \(^{(20)}\) and impaired white blood cell function \(^{(13, 22)}\) increase the incidence of necrosis and osteomyelitis. Prolonged operative time also increase the risk of post-operative infection \(^{(15)}\). Ashby’s \(^{(3)}\) second case was complicated by a deep infection postoperatively. Long bone infections, once established in patients are difficult to eradicate \(^{(2)}\). Great care and more effort required to minimize the risk of postoperative infection in this difficult group.

Conclusions

The condition of our patient is intermediate autosomal recessive form of osteopetrosis, presenting with pathological femoral fracture.

This report highlights for technical difficulties and surgery can be prolonged that make preoperative planning is mandatory in the management of fracture in osteopetrotic bone.

To avoid the risk of iatrogenic fracture in brittle and fragile osteopetrotic bone, more patience and caution are required during drilling and reaming for plating as well as intramedullary fixation.

Acknowledgement

The author wish to thank Dr. Saad A. Ghaban for the support in the preparation of this manuscript.

References

12. I. Semba, T. Ishigami, K. Sugihara and M. Kitano. Higher osteoclastic demineralization and highly mineralized cement lines with osteocalcin deposition in a mandibular cortical bone of...
Osteopetrosis Manifesting As a Femoral Fracture in Childhood…

Mahdi Abdul Sahib

18. Osteopetrosis (infantile, malignant Type), Marble Bone Disease: osteopetrosis in Iraq. available in http://www.kinderradiologie

9.