Hosoya Polynomials of Steiner Distance of the Sequential Join of Graphs

Herish O. Abdullah
College of Sciences
University of Salahaddin

Received on: 26/11/2007 Accepted on: 30/1/2008

Abstract

The Hosoya polynomials of Steiner \(n \)-distance of the sequential join of graphs \(J_3 \) and \(J_4 \) are obtained and the Hosoya polynomials of Steiner \(3 \)-distance of the sequential join of \(m \) graphs \(J_m \) are also obtained.

Keywords: Steiner \(n \)-distance, Hosoya polynomial, Sequential Join.

1. Introduction

We follow the terminology of [2,3]. For a connected graph \(G=(V,E) \) of order \(p \), the Steiner distance\([5,6,7]\) of a non-empty subset \(S \subseteq V(G) \), denoted by \(d_G(S) \) or simply \(d(S) \), is defined to be the size of the smallest connected subgraph \(T(S) \) of \(G \) that contains \(S \); \(T(S) \) is a tree called a Steiner tree of \(S \). If \(|S|=2 \), then \(d(S) \) is the distance between the two vertices of \(S \). For \(2 \leq n \leq p \) and \(|S|=n \), the Steiner distance of \(S \) is called Steiner \(n \)-distance of \(S \) in \(G \). The Steiner \(n \)-diameter of \(G \), denoted by \(\text{diam}_n^*G \) or simply \(\delta_n^*(G) \), is defined by:

\[
\text{diam}_n^*G = \max\{d_G(S) : S \subseteq V(G), |S|=n\}.
\]

Remark 1.1. It is clear that

1. If \(n > m \), then \(\text{diam}_n^*G \geq \text{diam}_m^*G \).
2. If \(S' \subseteq S \), then \(d_G(S') \leq d_G(S) \).

The Steiner \(n \)-distance of a vertex \(v \in V(G) \), denoted by \(W_n^*(v,G) \), is the sum of the Steiner \(n \)-distances of all \(n \)-subsets containing \(v \). The sum of
Steiner \(n \)-distances of all \(n \)-subsets of \(V(G) \) is denoted by \(d_n(G) \) or \(W_n^*(G) \).

It is clear that
\[
W_n^*(G) = n^{-1} \sum_{v \in V(G)} W_n^*(v,G).
\]

...(1.1)

The graph invariant \(W_n^*(G) \) is called Wiener index of the Steiner \(n \)-distance of the graph \(G \).

Definition 1.2

Let \(C_n^*(G,k) \) be the number of \(n \)-subsets of distinct vertices of \(G \) with Steiner \(n \)-distance \(k \). The graph polynomial defined by
\[
H_n^*(G;x) = \sum_{k=n-1}^{n} C_n^*(G,k)x^k,
\]

...(1.2)

where \(D_n^n \) is the Steiner \(n \)-diameter of \(G \); is called the Hosoya polynomial of Steiner \(n \)-distance of \(G \).

It is clear that
\[
W_n^*(G) = \sum_{k=n-1}^{n} k C_n^*(G,k)
\]

...(1.3)

For \(1 \leq n \leq p \), let \(C_n^*(u,G,k) \) be the number of \(n \)-subsets \(S \) of distinct vertices of \(G \) containing \(u \) with Steiner \(n \)-distance \(k \). It is clear that
\[
C_1^*(u,G,0) = 1.
\]

Define
\[
H_n^*(u,G;x) = \sum_{k=n-1}^{n} C_n^*(u,G,k)x^k.
\]

...(1.4)

Obviously, for \(2 \leq n \leq p \)
\[
H_n^*(G;x) = \frac{1}{n} \sum_{u \in V(G)} H_n^*(u,G;x).
\]

...(1.5)

Ali and Saeed [1] were first who studied this distance-based graph polynomial for Steiner \(n \)-distances, and established Hosoya polynomials of Steiner \(n \)-distance for some special graphs and graphs having some kind of regularity, and for Gutman’s compound graphs \(G_1 \cdot G_2 \) and \(G_1 : G_2 \) in terms of Hosoya polynomials of \(G_1 \) and \(G_2 \).

Definition 1.3

Let \(G_1, G_2, \ldots, G_m, \ m \geq 2 \), be vertex disjoint graphs. The sequential join of \(G_1, G_2, \ldots, G_m \) is a graph denoted by
\[
J_m = G_1 + G_2 + \ldots + G_m,
\]

and defined by
Hosoya Polynomials of Steiner Distance of the Sequential Join of Graphs

\[V(J_m) = \bigcup_{i=1}^{m} V(G_i), \]

\[E(J_m) = \bigcup_{i=1}^{m} E(G_i) \bigcup \{uv|u \in V_i \text{ and } v \in V_{i+1}, \text{ for } i = 1, 2, \ldots, m-1\} \]

in which \(V_i = V(G_i) \), as depicted in the following figure.

![Diagram showing \(J_m \)](image)

Fig. 1.1 \(J_m \)

It is clear that

\[p(J_m) = \sum_{i=1}^{m} p_i \cdot q(J_m) = q_m + \sum_{i=1}^{m-1} (q_i + p_i p_{i+1}), \]

in which \(p_i = p(G_i) \) and \(q_i = q(G_i) \).

One can easily see that for \(m \geq 3, \sum_{i=1}^{m} G_i \) is not commutative, that is for \(m=3 \)

\[G_1 + G_2 + G_3 \neq G_1 + G_3 + G_2. \]

In [8], Saeed obtained the (ordinary) Hosoya polynomials of \(J_m \), and in [7], Herish obtained the Steiner \(n \)-diameter of the sequential join of \(m \) empty graphs and of \(m \) complete graphs. Also, the Hosoya polynomials of Steiner distance of the sequential join of \(m \) empty graphs and of \(m \) complete graphs were obtained. For \(m \geq 3 \) and \(n \geq 2 \), the Steiner \(n \)-diameter of the sequential join of \(m \) complete graphs is given by [7]

\[\text{diam}^*_n J_m = \begin{cases}
 m + n - 3, & \text{if } 2 \leq n \leq p_1 + p_m \\
 m + n - 3 - \alpha, & \text{if } p_1 + p_m + 1 \leq n \leq p,
\end{cases} \]

where \(\alpha \) is the smallest integer such that

\[p_1 + p_m + 1 \leq n \leq p_1 + p_m + \sum_{i=1}^{\alpha} r_i. \]

It is obvious that Eq. 1.6 holds for the sequential join of \(m \) graphs \(J_m \).
In this paper, a generalization of the results obtained in [7] is given. We obtained the Hosoya polynomials of Steiner n-distance of J_3 and J_4; and the Hosoya polynomials of Steiner 3-distance of J_m, $m \geq 4$. We also obtained $H_n^*(J_3;x)$, for $n \geq 2$ and $H_n^*(J_m;x)$, for $m \geq 4$, where each of G_i, for $i = 1, 2, ..., m$ is a special graph.

2. Hosoya Polynomials of Steiner n-Distance of J_3 and J_4

In this section, we consider J_m, for $m=3$ and $m=4$. Let S be any n-subset of vertices of J_m. Let $B(G_i)$, for $i = 1, 2, ..., m$, be the number of all n-subsets S such that $\langle S \rangle$ is connected in G_i. The following proposition determines the Hosoya polynomials of Steiner n-distance of J_3.

Proposition 2.1. For $3 \leq n \leq p(= p_1 + p_2 + p_3)$,

$$H_n^*(J_3;x) = C_1 x^{n-1} + C_2 x^n,$$

where

$$C_1 = \binom{n}{p} - \binom{p_1 + p_2}{n} - \binom{p_2}{n} + B(G_1) + B(G_2) + B(G_3),$$

$$C_2 = \binom{p_2}{n} + \binom{p_1 + p_3}{n} - [B(G_1) + B(G_2) + B(G_3)].$$

and

$B(G_1), B(G_2)$ and $B(G_3)$ are as defined above.

Proof. It is clear that

$$diam_n^*J_3 = \begin{cases} n, & \text{if } 3 \leq n \leq p_1 + p_3 \\ n-1, & \text{otherwise} \end{cases}.$$

Therefore,

$$H_n^*(J_3;x) = C_1 x^{n-1} + C_2 x^n$$

in which C_1 is the number of all n-subsets of $V(J_3)$ with Steiner distance equals $n-1$, and C_2 is the number of all n-subsets of $V(J_3)$ with Steiner distance equals n. Therefore,

$$C_2 = \sum_{i=1}^{3} \left(\binom{p_i}{n} - B(G_i) \right) + \sum_{j=1}^{n-1} \binom{p_1}{j} \binom{p_3}{n-j}$$

$$= \binom{p_2}{n} + \binom{p_1 + p_3}{n} - [B(G_1) + B(G_2) + B(G_3)].$$
Now, since
\[C_1 + C_2 = \binom{p}{n}, \]
therefore
\[C_1 = \binom{p}{n} - C_2 = \binom{p}{n} - \binom{p_1 + p_3}{n} - \binom{p_2}{n} + B(G_1) + B(G_2) + B(G_3) \]
This completes the proof. ■

The following corollary computes the \(n \)-Wiener index of \(J_3 \).

Corollary 2.2. For \(3 \leq n \leq p (= p_1 + p_2 + p_3) \),
\[W_n^*(J_3) = n \binom{p}{n} - C_1, \]
where \(C_1 \) is given in Proposition 2.1. ■

Next, we shall find the Hosoya polynomials of Steiner \(n \)-distance of \(J_4 \).

Proposition 2.3. For \(3 \leq n \leq p (= p_1 + p_2 + p_3 + p_4) \),
\[H_n^*(J_4; x) = C_1x^{n-1} + C_2x^n + C_3x^{n+1}, \]
where
\[
C_1 = \sum_{i=1}^{n-2} \sum_{j=1}^{n-1-i} \left[\binom{p_1}{i} \binom{p_2}{j} \binom{p_3}{n-i-j} + \binom{p_2}{i} \binom{p_3}{j} \binom{p_4}{n-i-j} \right] + \sum_{i=1}^{n-3} \sum_{j=1}^{n-2-i} \sum_{k=1}^{n-1-j} \left[\binom{p_1}{i} \binom{p_2}{j} \binom{p_3}{k} \binom{p_4}{n-i-j-k} \right] + \sum_{i=1}^{4} B(G_i)
\]
\[
C_2 = \binom{p}{n} - \sum_{i=1}^{n-2} \sum_{j=1}^{n-1-i} \left[\binom{p_1}{i} \binom{p_2}{j} \binom{p_3}{n-i-j} \right] - \sum_{i=1}^{n-3} \sum_{j=1}^{n-2-i} \sum_{k=1}^{n-1-j} \left[\binom{p_1}{i} \binom{p_2}{j} \binom{p_3}{k} \binom{p_4}{n-i-j-k} \right] - \sum_{i=1}^{4} B(G_i)
\]
\[
+ \binom{p_1 + p_2}{n} + \binom{p_2 + p_3}{n} + \binom{p_3 + p_4}{n} - \binom{p_1}{n} - \binom{p_2}{n} - \binom{p_3}{n} - \binom{p_4}{n}.
\]
and
\[C_3 = \binom{p_1 + p_4}{n} - \binom{p_1}{n} - \binom{p_4}{n}. \]

Proof. It is clear that \(n - 1 \leq \text{diam}_n J_4 \leq n + 1 \), therefore the Hosoya polynomials of Steiner \(n \)-distance of \(J_4 \) has the following form
\[H^*_n(J_4; x) = C_1 x^{n-1} + C_2 x^n + C_3 x^{n+1}. \]

To find \(C_1, C_2 \) and \(C_3 \), let \(S \) be any \(n \)-subset of vertices of \(J_4 \), then we have the following possibilities for the subset \(S \).

(I) \(d(S) = n - 1 \) if and only if \(S \) has any of the following subcases:

1. \(S \) is a subset of \(V_j \), for \(i = 1, 2, 3, 4 \) and \(\langle S \rangle \) is a connected subgraph of \(G_i \). The number of these \(n \)-subsets is given by
 \[B(G_1) + B(G_2) + B(G_3) + B(G_4). \]

2. \(S \subseteq V_k \cup V_{k+1} \) and \((S \mid V_k \neq \emptyset \land S \mid V_{k+1} \neq \emptyset) \), \(k = 1, 2, 3 \).
 The number of these subsets \(S \) is given by
 \[\sum_{i=1}^{n-1} \binom{p_1}{i} \binom{p_2}{n-i} + \binom{p_3}{i} \binom{p_4}{n-i} = \binom{p_1 + p_2}{n} + \binom{p_3 + p_4}{n} - \binom{p_1}{n} - 2 \binom{p_2}{n} - 2 \binom{p_3}{n} - \binom{p_4}{n}. \]

3. \(S \subseteq \bigcup_{i=1}^{3} V_i \land S \mid V_i \neq \emptyset \) or \(S \subseteq \bigcup_{i=2}^{4} V_i \land S \mid V_i \neq \emptyset \). The number of these \(n \)-subsets is given by
 \[\sum_{i=1}^{n-2} \sum_{j=1}^{n-1} \left[\binom{p_1}{i} \binom{p_2}{j} \binom{p_3}{n-i-j} + \binom{p_1}{j} \binom{p_2}{i} \binom{p_4}{n-i-j} \right]. \]

4. \(S \mid V_i \neq \emptyset \), \(i = 1, 2, 3, 4 \). The number of these \(n \)-subsets is given by
 \[\sum_{i=1}^{n-3} \sum_{j=1}^{n-2} \sum_{k=1}^{n-1} \binom{p_1}{i} \binom{p_2}{j} \binom{p_3}{k} \binom{p_4}{n-i-j-k}. \]

From (I), (2), (3) and (4), we get \(C_1 \) as given in the statement of the proposition.

(II) \(d(S) = n + 1 \) if and only if \(S \subseteq V_1 \cup V_4 \) and \((S \mid V_1 \neq \emptyset \land S \mid V_4 \neq \emptyset) \). The number of these \(S \)’s is given by
\[\sum_{i=1}^{n-1} \binom{p_1 + p_4}{n-i} = \binom{p_1 + p_4}{n} - \binom{p_1}{n} - \binom{p_4}{n}. \]

So, \(C_3 \) is as given.
Now, since \(C_1 + C_2 + C_3 = \binom{p}{n} \),

therefore

\[
C_2 = \binom{p}{n} - C_1 - C_3.
\]

This completes the proof. ■

Remark. The triple summation in \(C_1 \) is taken to be zero when \(n=3 \).

The following corollary computes \(W_n^*(J_4) \).

Corollary 2.4. For \(3 \leq n \leq p= (p_1 + p_2 + p_3 + p_4) \),

\[
W_n^*(J_4) = n \left(\binom{p}{n} - C_1 + C_3 \right),
\]

where \(C_1 \) and \(C_3 \) are given in Proposition 2.3. ■

Remark. For \(m \geq 5 \), the calculation of the coefficients of \(H_n^*(J_m; x) \) is complicated.

The numbers \(B(G_1), B(G_2) \) and \(B(G_3) \) are given in Proposition 2.1 can be counted for some specific graphs \(G_1, G_2 \) and \(G_3 \) as in the following examples.

Example 2.5. Let \(N_{p_1}, N_{p_2} \) and \(N_{p_3} \) be empty graphs of orders \(p_1, p_2 \) and \(p_3 \) respectively, then \(B(N_{p_i}) = B(N_{p_2}) = B(N_{p_3}) = 0 \).

Example 2.6. Let \(K_{p_1}, K_{p_2} \) and \(K_{p_3} \) be complete graphs of orders \(p_1, p_2 \) and \(p_3 \) respectively, then

\[
B(K_{p_i}) = \binom{p_i}{n}, \text{ for } i = 1, 2, 3.
\]

Example 2.7. Let \(P_{\alpha_1}, P_{\alpha_2} \) and \(P_{\alpha_3} \) be path graphs of orders \(\alpha_1, \alpha_2 \) and \(\alpha_3 \) respectively, then

\[
B(P_{\alpha_i}) = \alpha_i - n + 1, \text{ for } i = 1, 2, 3.
\]

Example 2.8. Let \(C_{\alpha_1}, C_{\alpha_2} \) and \(C_{\alpha_3} \) be cycle graphs of orders \(\alpha_1, \alpha_2 \) and \(\alpha_3 \) respectively, then

\[
B(C_{\alpha_i}) = \alpha_i, \text{ for } i = 1, 2, 3.
\]
Example 2.9. Let \(W_{\alpha_1}, W_{\alpha_2}, \) and \(W_{\alpha_3} \) be wheel graphs of orders \(\alpha_1, \alpha_2 \) and \(\alpha_3 \) respectively, then
\[
B(W_{\alpha_i}) = \frac{\alpha_i - 1}{n - 1} + \alpha_i - 1, \text{ for } i = 1, 2, 3.
\]

Example 2.10. Let \(K_{\alpha_i, \beta_i} \), for \(i = 1, 2, 3 \), be complete bipartite graphs of partite sets of size \(\alpha_i, \beta_i \), then
\[
B(K_{\alpha_i, \beta_i}) = \binom{\alpha_i + \beta_i - 1}{n} - \binom{\alpha_i - 1}{n} - \binom{\beta_i - 1}{n}, \text{ for } i = 1, 2, 3.
\]

3. Hosoya Polynomials of Steiner 3-Distance of \(J_m \) (\(m \geq 5 \))

In this section, we consider \(J_m = G_1 + G_2 + \ldots + G_m \), for \(m \geq 5 \). The following theorem determines Hosoya polynomials of Steiner 3-distance of \(J_m \).

Theorem 3.1. For \(m \geq 5 \),
\[
H^*_J(J_m; x) = (A + Bx)x^2 + \frac{1}{2} \sum_{j=1}^{m-1} \sum_{i=1}^{j-1} \sum_{i=1}^{j-1} p_i p_j (p_i + p_j - 2)x^{j-i+1} + \sum_{j=i+2}^{m} \sum_{i=1}^{j-2} \sum_{i=1}^{j-2} p_i p_j \sum_{r=1}^{j-2} x^{j-i},
\]
where
\[
A = \sum_{i=1}^{m} \left[\sum_{v \in V_i} \binom{\deg v - 2}{2} - 2\gamma_i \right], \quad B = \sum_{i=1}^{m} \binom{p_i}{3} - A,
\]
in which \(\gamma_i \), for \(i = 1, 2, \ldots, m \) is the number of non-identical triangles \(K_3 \) as a subgraph in \(G_i \).

Proof. Let \(S \) be any 3-subset of vertices of \(J_m \), then we have three main cases for the subset \(S \).

(I) If \(S \subseteq V_i \), for \(i = 1, 2, \ldots, m \), then
(a) \(d(S) = 2 \), when \(\langle S \rangle \) is a connected subgraph in \(G_i \), and by Lemma 3.4.4. of [7], the number of such 3-subsets \(S \) is given by
\[
A = \sum_{i=1}^{m} \left[\sum_{v \in V_i} \binom{\deg v - 2}{2} - 2\gamma_i \right].
\]
(b) \(d(S) = 3 \), when \(\langle S \rangle \) is a disconnected subgraph in \(G_i \), and the number of such 3-subsets \(S \) is given by
Hosoya Polynomials of Steiner Distance of the Sequential Join of Graphs

\[B = \sum_{i=1}^{m} \binom{p_i}{3} - A. \]

Case (I) produces the polynomial
\[F_1(x) = (A + Bx)x^2. \]

(II) Either two vertices of S are in \(V_i \) and one vertex of S in \(V_j \), \(i < j \), or one vertex of S in \(V_i \), and two vertices of S in \(V_j \), for \(1 \leq i < j \leq m \). For each such case of S,
\[d(S) = j - i + 1, \]
and the number of ways of choosing such S is given by
\[\sum_{j=i+1}^{m} \sum_{i=1}^{m-1} \left[\binom{p_i}{2} p_j + \binom{p_j}{2} p_i \right], \]
and, this produces the polynomial
\[F_2(x) = \frac{1}{2} \sum_{j=i+1}^{m} \sum_{i=1}^{m-1} (p_j p_i (p_i - 1) + p_i p_j (p_j - 1)) x^{j-i}, \]
\[= \frac{1}{2} \sum_{j=i+1}^{m} \sum_{i=1}^{m-1} p_i p_j (p_i + p_j - 2) x^{j-i+1}. \]

(III) One vertex of S in \(V_i \), one vertex in \(V_j \), \(j \geq i + 2 \), and the third vertex in \(V_r \), \(i < r < j \). For such case
\[d(S) = j - i, \]
and the number of all possibilities of such S is
\[\sum_{j=i+2}^{m} \sum_{i=1}^{m-2} p_i p_j \left(\sum_{r=i+1}^{j-1} p_r \right), \]
and this produces the polynomial
\[F_3(x) = \sum_{j=i+2}^{m} \sum_{i=1}^{m-2} p_i p_j \left(\sum_{r=i+1}^{j-1} p_r \right) x^{j-i}. \]

Now adding the polynomials \(F_1(x), F_2(x) \) and \(F_3(x) \) obtained in (I), (II) and (III), we get the required result. \(\blacksquare \)

The numbers \(A \) and \(B \) are given in Theorem 3.1 can be counted when \(G_i \), for \(i = 1, 2, \ldots, m \), has a special form, as in the following examples.

Example 3.2. Let \(N_{p_i} \), for \(i = 1, 2, \ldots, m \) be empty graphs of orders \(p_i \), then
\[A = 0 \quad \text{and} \quad B = \sum_{i=1}^{m} \binom{p_i}{3}. \]
Example 3.3. Let K_{p_i} for $i = 1, 2, \ldots, m$ be complete graphs of orders p_i, then

$$A = \sum_{i=1}^{m} \binom{p_i}{3} \quad \text{and} \quad B = 0.$$

Example 3.4. Let P_{α_i} for $i = 1, 2, \ldots, m$ be path graphs of orders α_i, then

$$A = \sum_{i=1}^{m} [\alpha_i - 2] = p - 2m \quad \text{and} \quad B = \sum_{i=1}^{m} \binom{\alpha_i}{3} - p + 2m.$$

Example 3.5. Let C_{α_i} for $i = 1, 2, \ldots, m$ be cycle graphs of orders α_i, then

$$A = \sum_{i=1}^{m} \alpha_i = p \quad \text{and} \quad B = \sum_{i=1}^{m} \binom{\alpha_i}{3} - p.$$

Example 3.6. Let W_{α_i} for $i = 1, 2, \ldots, m$ be wheel graphs of orders α_i, then

$$A = \sum_{i=1}^{m} \left[\sum_{r \geq 1} \left(\binom{\deg r}{2} - 2 \gamma_i \right) \right] = \sum_{i=1}^{m} \left[(\alpha_i - 1) \binom{3}{2} + \binom{\alpha_i}{2} - 2(\alpha_i - 1) \right]$$

$$= \sum_{i=1}^{m} \binom{\alpha_i}{2},$$

and

$$B = \sum_{i=1}^{m} \binom{\alpha_i}{3} - \sum_{i=1}^{m} \binom{\alpha_i}{2} = \frac{1}{6} \sum_{i=1}^{m} \alpha_i (\alpha_i - 1)(\alpha_i - 5).$$

Example 3.7. Let K_{α_i, β_i} for $i = 1, 2, \ldots, m$, be complete bipartite graphs of partite sets of size α_i, β_i, then it is known that K_{α_i, β_i} contains no odd cycles, and so $\gamma_i = 0$, for $i = 1, 2, \ldots, m$.

Hence,

$$A = \sum_{i=1}^{m} \left[\alpha_i \binom{\beta_i}{2} + \beta_i \binom{\alpha_i}{2} \right] = \frac{1}{2} \sum_{i=1}^{m} \alpha_i \beta_i (\alpha_i + \beta_i - 2),$$

and

$$B = \sum_{i=1}^{m} \left\{ \binom{\alpha_i + \beta_i}{3} - \frac{1}{2} \alpha_i \beta_i (\alpha_i + \beta_i - 2) \right\}.$$
REFERENCES

