Detour Hosoya Polynomials of Some Compound Graphs

Herish O. Abdullah Gashaw A. Muhammed-Saleh

College of Science
University of Salahaddin

Received on:23/11/2009 Accepted on:11/4/2010

ABSTRACT

In this paper we will introduce a new graph distance based polynomial; Detour Hosoya polynomials of graphs $H^*(G;x)$. The Detour Hosoya polynomials $H^*(G;x)$ for some special graphs such as paths and cycles are obtained. Moreover the Detour Hosoya polynomials $H^*(G_1\bullet G_2;x), H^*(G_1\cdot G_2;x)$ and $H^*(G_1\cup G_2;x)$ are obtained.

Keywords: Detour distance, compound graphs, Hosoya polynomials.

1. Introduction

The concept of Hosoya polynomial was first put forward in 1988 by Hosoya [1]. Several authors, such as [1], [2], [3], [4], [5], [6], [7], [8], [13] and [15] had obtained Hosoya polynomials for special graphs, graphs having some kind of regularity and for compound graphs obtained by using some well-known binary operations in graph theory.

In this paper, we consider finite connected graphs without loops or multiple edges. For undefined concepts and notations see [9] and [12].

Ordinarily, when we wish to proceed from a point A to a point B we take a route which involves the least distance. We have all been faced with detour sign which require us to take a route from A to B that involves a greater distance. In any such detour route from A to B we assume that there is no possible shortcut along the route, for otherwise this should have been part of the route initially. When one is driving along such a detour, it sometimes seems that we are using the longest route possible from A to B
(again subject to the “no shortcut” condition). In this paper we investigate longest detour routes in graphs.

The distance \(d(u,v) \) between two vertices \(u \) and \(v \) in a connected graph \(G \) is the length of a shortest \(u-v \) path in \(G \). For a nonempty set \(S \) of vertices of \(G \), the subgraph \(<S> \) of \(G \) induced by \(S \) as its vertex set while an edge of \(G \) belongs to \(<S> \) if it joins two vertices of \(S \). If \(P \) is a \(u-v \) path of length \(d(u,v) \), then the subgraph \(<V(P)> \) induced by the vertices of \(P \) is \(P \) itself. This observation suggests the following concept.

The detour distance \(d^*(u,v) \) between \(u \) and \(v \) in \(G \) is the length of a longest induced \(u-v \) path, that is a longest \(u-v \) path \(P \) for which \(<V(P)> \geq P \). An induced \(u-v \) path of length \(d^*(u,v) \) is called a detour path [10].

Observe that \(d^*(u,v) \geq d(u,v) \) for all vertices \(u \) and \(v \) of \(G \) and that \(d^*(u,v) = d(u,v) = 1 \) if and only if \(u \) and \(v \) are adjacent. Also, note that \(d^*(u,v) = d^*(v,u) \) for all vertices \(u \) and \(v \) of \(G \). Therefore the detour distance is symmetric. However, the triangle inequality does not hold in general. Consider the wheel \(W_p \) of order \(p \geq 6 \) with center at the vertex \(w \); then: \(d^*(u,v) = p - 3 > 2 = d^*(u,w) + d^*(w,v), \) for every two vertices \(u \) and \(v \) of \(W_p \), \(u,v \neq w \), that are both adjacent to a common vertex \(x \neq w \).

Therefore, in general, the detour distance is not a metric on the vertex set of \(G[10] \).

The detour eccentricity \(e^*(v) \) of a vertex \(v \) is defined by \(e^*(v) = \max\{d^*(v,w) : w \in V(G)\} \). The detour eccentricity set \(e^*(G) \) of a connected graph \(G \) is the set consisting of all detour eccentricities of \(G \), that is \(e^*(G) = \{e^*(v) : v \in V(G)\} \). The detour radius \(rad^*(G) \) of \(G \) is the minimum detour eccentricity, while the detour diameter \(diam^*(G) \) of \(G \) is the maximum detour eccentricity.

For completeness we define \(d^*(u,v) = 0 \) if and only \(u = v \).

A connected graph \(G \) is called a detour graph if \(d^*(u,v) = d(u,v) \) for all vertices \(u \) and \(v \) of \(G \). No cycle of length 5 or more is a detour graph.
On the other hand, all trees and all complete graphs are detour graphs. If \(u \) and \(v \) are distinct vertices of a graph \(G \) such that \(d^*(u,v) = 1 \) or \(2 \), then \(d(u,v) = d(u,v) \)[10], the converse is not true in general, that is if \(d(u,v) = 2 \), then \(d^*(u,v) \geq 2 \), as for the wheel \(W_p, \ p \geq 6 \).

The concept of Hosoya polynomial \(H(G;x) \) of a graph \(G \) was put forward by Hosoya[13], and defined as

\[
H(G;x) = \sum_{k=0}^{\delta(G)} C(G,k)x^k
\]

where \(C(G,k) \) is the number of pairs of vertices in \(G \) that are distance \(k \) apart, and \(\delta(G) \) is the diameter of the graph \(G \).

In this paper, the concept of **Hosoya polynomials of detour distance** of a connected graph \(G \) (or simply **detour Hosoya polynomial of a graph** \(G \)) has been defined by

\[
H^*(G;x) = \sum_{k=0}^{\delta^*(G)} C^*(G,k)x^k = \sum_{\{u,v\} \subseteq V(G)} x^{d^*(u,v)} \quad \cdots(1)
\]

in which \(C^*(G,k) \) is the number of pairs of vertices in \(G \) with detour distance \(k \), and \(\delta^*(G) \) is the detour diameter of \(G \).

It is clear that if \(G \) is a detour graph, then \(H^*(G;x) = H(G;x) \).

The sum \(W^*(G) \) of detour distances between all pairs of vertices of the graph \(G \) is known as the **Wiener index of detour distance** of the graph \(G \) (or simply **detour Wiener index** of the graph \(G \)), that is

\[
W^*(G) = \sum_{u,v} d^*(u,v),
\]

where the sum is taken over all unordered pairs \(\{u,v\} \) of distinct vertices in \(G \).

It is clear that

\[
W^*(G) = \frac{d}{dx} H^*(G;x) \bigg|_{x=1}.
\]

We illustrate these ideas in the following example.

Example 1.1. Let \(G \) be a graph of order \(p = 9 \), depicted in figure 1.1(a).

It is clear that

\[
e^*(v_1) = 5, \ e^*(v_2) = 4, \ e^*(v_3) = 4, \ e^*(v_4) = 3, \ e^*(v_5) = 4, \\
e^*(v_6) = 3, \ e^*(v_7) = 4, \ e^*(v_8) = 5 \text{ and } e^*(v_9) = 5.
\]
Hence
\[e^*(G) = \{5, 4, 4, 3, 4, 3, 4, 5, 5\}, \quad \text{diam}^*(G) = 5 \quad \text{and} \quad \text{rad}^*(G) = 3. \]

A detour \(v_1 - v_9 \) path is given in Figure 1.1(b). Therefore \(d^*(v_1, v_9) = 5 \), and this gives us the maximum detour distance among all detour distances of pairs of vertices of \(V(G) \).

The path \(P' \) is not a detour \(v_1 - v_9 \) path, because \(\{V(P')\} \neq P' \) (see figures 1.1(c) and 1.1(d)).

By direct calculations, we get that
\[C^*(G, 0) = p = 9, \quad C^*(G, 1) = 10, \quad C^*(G, 2) = 9, \]
\[C^*(G, 3) = 9, \quad C^*(G, 4) = 6 \quad \text{and} \quad C^*(G, 5) = 2. \]

Hence, the detour Hosoya polynomial of \(G \) is
\[H^*(G; x) = 9 + 10x + 9x^2 + 9x^3 + 6x^4 + 2x^5, \]
and
\[W^*(G) = \frac{d}{dx}H^*(G; x) \bigg|_{x=1} = 89. \]

![Figure 1.1](image)

(a) The graph \(G \)
(b) The detour \(v_1 - v_9 \) path

(c) The path \(P' \)
(d) \(\{V(P')\} \)

In 1993, Gutman [8], established few additional properties of the respective graph polynomials. He obtained Hosoya polynomials of some special graphs and obtained formula for the Hosoya polynomials of some compound graphs, namely \(G_1 \cdot G_2 \) and \(G_1 : G_2 \) which are defined in the following: Let \(G_1 \) and \(G_2 \) be vertex-disjoint connected graphs, and let \(u \in V(G_1) \) and \(v \in V(G_2) \). Then, the graph \(G_1 \cdot G_2 \) is obtained from
\(G_1\) and \(G_2\) by identifying the two vertices \(u\) and \(v\). This means that \(G_1\) and \(G_2\) have exactly one vertex in common in the compound graph \(G_1 \cdot G_2\). The graph \(G_1 \cdot G_2\) is obtained from \(G_1\) and \(G_2\) by introducing a new edge joining the two vertices \(u\) and \(v\). In this paper, formulas for \(H^*(G_1 \cdot G_2; x)\) and \(H^*(G_1 \cdot G_2; x)\) in terms of the detour Hosoya polynomials of \(G_1\) and \(G_2\) will be obtained.

2. Detour Hosoya Polynomials of Some Special Graphs

Let \(P_n\), \(K_n\) and \(S_n\) denotes the path, complete and star graphs of \(n\) vertices respectively. It is known that [10] all trees and complete graphs are detour graphs. This leads us to the following result.

Proposition 2.1

\[
\begin{align*}
(a) \quad H^*(P_n; x) &= \sum_{k=0}^{n-1} (n-k)x^k. \\
(b) \quad H^*(K_n; x) &= n + \frac{1}{2}n(n-1)x. \\
(c) \quad H^*(S_n; x) &= n + (n-1)x + \left(\frac{n-1}{2}\right)x^2.
\end{align*}
\]

Proof. Let \(C_p\) be a cycle of order \(p \geq 5\), then

\[
H^*(C_p; x) = \begin{cases}
\sum_{k=\frac{p+1}{2}}^{p} x^k & \text{if } p \text{ is odd} \\
p(1 + x + \frac{1}{2}x^\frac{p}{2} + \sum_{k=\frac{p}{2}+1}^{p-2} x^k) & \text{if } p \text{ is even}
\end{cases}
\]

Proposition 2.2 Let \(C_p\) be a cycle of order \(p \geq 5\), then

\[
H^*(C_p; x) = \begin{cases}
p(1 + x + \sum_{k=\frac{p+1}{2}}^{p} x^k) & \text{if } p \text{ is odd} \\
p(1 + x + \frac{1}{2}x^\frac{p}{2} + \sum_{k=\frac{p}{2}+1}^{p-2} x^k) & \text{if } p \text{ is even}
\end{cases}
\]

Proof. Let \(u,v\) be any two distinct vertices of \(C_p\). We will consider the following cases:

1. If \(uv \in E(C_p)\) then \(d^*(u,v) = 1\) and \(C^*(G,1) = p\).
2. If \(uv \notin E(C_p)\), then \(d^*(u,v) = p - d(u,v)\), where \(d(u,v)\) denotes the ordinary distance.
We know that \[11\], for an odd \(p\), the ordinary Hosoya polynomial of \(C_p\) is given by \(H(C_p; x) = p + px + p \sum_{k=2}^{\frac{p-1}{2}} x^k\).

Hence
\[
H^*(C_p; x) = p + px + p \sum_{k=2}^{\frac{p-1}{2}} x^k
\]
or
\[
H^*(C_p; x) = p + px + p \sum_{k=\frac{p+1}{2}}^{p-2} x^k.
\]
Similarly, we prove the formula for the case when \(p\) is even. This completes the proof. ■

Proposition 2.3 Let \(W_p\) be a wheel graph of \(p \geq 6\) vertices, then
\[
H^*(W_p; x) = p + 2(p-1)x + (p-1)\left\{ \begin{array}{ll}
\sum_{k=\frac{p}{2}}^{p-3} x^k, & \text{if } p \text{ is even} \\
\frac{1}{2}x^{\frac{p-1}{2}} + \sum_{k=\frac{p+1}{2}}^{p-3} x^k, & \text{if } p \text{ is odd}
\end{array} \right.
\]

Proof. For \(uv \in E(W_p)\), \(d_{W_p}^*(u, v) = d_{C_{p-1}}^*(u, v)\).

Hence, for \(k \geq 2\)
\[
C^*(W_p, k) = C^*(C_{p-1}, k).
\]
Thus,
\[
H^*(W_p; x) = 1 + (p-1)x + H^*(C_{p-1}, x).
\]
Now, using Proposition 2 we obtain the required result. ■

Proposition 2.4 Let \(K_{t,s}\) be a complete bipartite graph with partite subsets of sizes \(t\) and \(s\), then
\[
H^*(K_{t,s}; x) = (t + s) + (ts)x + \left[\binom{t}{2} + \binom{s}{2} \right] x^2.
\]

Proof. Obvious ■
The following result gives us the Wiener index of the detour distance of the special graphs \(P_n \), \(K_n \), \(S_n \), \(C_p \), \(W_p \) and \(K_{t,s} \).

Proposition 2.5

1. \(W^*(P_n) = \frac{1}{6} n(n^2 - 1) \).
2. \(W^*(K_n) = \frac{1}{2} n(n - 1) \).
3. \(W^*(S_n) = (n - 1)^2 \).
4. For \(p \geq 5 \), \(W^*(C_p) = \begin{cases} \frac{1}{3} p(3p^2 - 12p + 17), & \text{if } p \text{ is odd} \\ \frac{1}{3} p(3p^2 - 12p + 16), & \text{if } p \text{ is even} \end{cases} \)
5. For \(p \geq 6 \), \(W^*(W_p) = \begin{cases} \frac{1}{8} (p-1)(3p^2 - 18p + 39), & \text{if } p \text{ is odd} \\ \frac{1}{8} (p-1)(3p^2 - 18p + 40), & \text{if } p \text{ is even} \end{cases} \)
6. \(W^*(K_{t,s}) = ts + t(t - 1) + s(s - 1) \).

3. **Detour Hosoya Polynomials of Some Compound Graphs**

Let \(u \) be a vertex of a connected graph \(G \) of order \(p \). The number of pairs of vertices of \(G \) containing the vertex \(u \) such that \(d_G^*(u,v) = k \), \(\forall v \in V(G) \), will be denoted by \(C^*(u,G;k) \).

We define the polynomial

\[
H^*(u,G;x) = \sum_{k=0}^{\epsilon^*(u)} C^*(u,G;k)x^k \quad \text{ ...(2)}
\]

It is clear that

\[
H^*(G;x) = \frac{1}{2} \sum_{u \in V(G)} H^*(u,G;x) + \frac{1}{2} p \quad \text{ ...(3)}
\]

Let \(G_1 \) and \(G_2 \) be two disjoint connected graphs of orders \(p_1 \) and \(p_2 \) respectively. Moreover, let \(w \) be the vertex obtained by identifying the vertex \(u \) of \(G_1 \) with the vertex \(v \) of \(G_2 \) in order to construct the compound graph \(G_1 \cdot G_2 \). The compound graph \(G_1 : G_2 \) is obtained by introducing a new edge joining the vertex \(u \) of \(G_1 \) with the vertex \(v \) of \(G_2 \).

Now, we are ready to present formulas for \(H^*(G_1 \cdot G_2;x) \) and \(H^*(G_1 : G_2;x) \) in terms of \(H^*(G_1;x) \) and \(H^*(G_2;x) \).
Theorem 3.1 If G_1 and G_2 are disjoint connected graphs, then

$$H^*(G_1 \cdot G_2;x) = H^*(G_1;x) + H^*(G_2;x) + H^*(u,G_1;x). H^*(v,G_2;x) - H^*(u,G_1;x) - H^*(v,G_2;x).$$

Proof: Let s, t be any two vertices of $G_1 \cdot G_2$ such that $d_{G_1 \cdot G_2}^*(s,t) = k$. We will consider the following cases:

1. If $s,t \in V(G_1)$, then $C^*(G_1 \cdot G_2;k) = C^*(G_1,k)$, which produces the polynomial $H^*(G_1;x)$.
2. If $s,t \in V(G_2)$, then $C^*(G_1 \cdot G_2;k) = C^*(G_2,k)$, which produces the polynomial $H^*(G_2;x)$.
3. $s \in V(G_1)$ and $t \in V(G_2)$: In this case, any longest induced (s,t)-path P will contain the vertex w. If P' is a longest (s,w)-path and P'' is a longest (t,w)-path with $\langle V(P') \rangle = P'$ and $\langle V(P'') \rangle = P''$, then

$V(P) = V(P') \cup V(P'')$, and $\langle V(P) \rangle = \langle V(P') \cup V(P'') \rangle$,

because no vertex of P', other than w is adjacent with a vertex of P'', other than w.

Therefore $P' \cdot P'' = \langle V(P) \rangle = P$.

Hence, $d_{G_1 \cdot G_2}^*(s,t) = d_{G_1}^*(s,w) + d_{G_2}^*(t,w)$.

This produces the polynomial $H^*(u,G_1;x). H^*(v,G_2;x)$. Notice that the polynomial $H^*(u,G_1;x)$ is counted twice in the Cases (1) and (3), and also $H^*(v,G_2;x)$ is counted twice in the Cases (2) and (3).

Now, adding the polynomials obtained from the cases (1), (2) and (3), we get the required result.

Theorem 3.2 If G_1 and G_2 are disjoint connected graphs, then

$$H^*(G_1 : G_2;x) = H^*(G_1;x) + H^*(G_2;x) + H^*(u,G_1;x). H^*(v,G_2;x).$$

Proof: Let s, t be any two distinct vertices of the compound graph $G_1 : G_2$. We consider the following cases:

1. If $s,t \in V(G_1)$, then we get the polynomial $H^*(G_1;x)$.
2. If $s,t \in V(G_2)$, then we get the polynomial $H^*(G_2;x)$.

206
(3) $s \in V(G_1)$ and $t \in V(G_2)$: In this case, any longest (s,t)-path will contains the edge uv, and as in the proof of Theorem 6(Case 3), this produces the polynomial
\[x \cdot H^*(u,G_1;x) \cdot H^*(v,G_2;x) \]
Now, adding the polynomials obtained from the cases (1), (2) and (3), we get the required result.

Definition 3.3 Let G_1 and G_2 be disjoint connected graphs of orders p_1 and p_2, respectively. Let $G_2^{(i)}$ be the i^{th} copy of G_2. The **Corona** $G_1 \odot G_2$, is the graph[13] constructed from $G_1 \cup p_1G_2$ with additional edges $\bigcup_{i=1}^{p_1} \{v : u \in V(G_2^{(i)})\}$, as depicted in Fig. 3.1, in which $V(G_1) = \{v_1,v_2,...,v_{p_1}\}$.

It is clear that
\[p(G_1 \odot G_2) = p_1(1 + p_2) = p , \]
and
\[q(G_1 \odot G_2) = q(G_1) + p_1(p_2 + q(G_2)) = q . \]

![Fig. 3.1 The Corona $G_1 \odot G_2$](image)

The next theorem computes the detour Hosoya polynomial of the corona $G_1 \odot G_2$.

Detour Hosoya Polynomials of Some Compound Graphs
Theorem 3.4 Let G_1 and G_2 be two disjoint connected graphs, then

$$H^*(G_1, G_2; x) = (1 + p_2 x)^2 H^*(G_1; x) + p_1 H^*(G_2; x) - p_1 p_2 x (1 + p_2 x).$$

Proof. Let s, t be any two distinct vertices of G_1 and G_2. We will consider the following cases:

Case 1. If $s, t \in V(G_1)$, then we get the polynomial $H^*(G_1; x)$.

Case 2. If $s, t \in V(G_2^{(i)})$, for $i = 1, 2, \ldots, p_1$, then we get the polynomial $p_1 H^*(G_2; x)$.

Case 3. $s \in V_2^{(i)}$ and $t = v_j$ (or $s = v_i$ and $t \in V_2^{(j)}$) for $i, j = 1, 2, \ldots, p_1$, then

(i) If $i = j$, then we get the polynomial $p_1 p_2 x$.

(ii) If $i \neq j$, then we get the polynomial $2 p_2 x [H^*(G_1; x) - p_1]$.

Case 4. If $s \in V_2^{(i)}$ and $t \in V_2^{(j)}$ for $i, j = 1, 2, \ldots, p_1$, $i \neq j$, then we get the polynomial $p_2 x^2 [H^*(G_1; x) - p_1]$.

Now, adding the polynomials obtained from the above cases and simplifying, we get the required result. ■
REFERENCES

