First report of grapevine dieback caused by *Lasiodiplodia theobromae* and *Neoscytalidium dimidiatum* in Basrah, Southern Iraq

Department of Biology, College of Science, Basrah university, Iraq

Date Palm Research Centre, Basrah university, Iraq

ABSTRACT

In Basrah, grapevines suffer from dieback. *Lasiodiplodia theobromae* and *Neoscytalidium dimidiatum* were isolated from diseased grapevines *Vitis vinifera* L. and identified based on morphological characteristics and DNA sequence data of the rDNA internal transcribed spacer (ITS) region. The results of the pathogenicity test conducted under greenhouse conditions for *L. theobromae* and *N. dimidiatum* revealed that both species were the causal agents of grapevines diebacks in Basrah, Southern Iraq. A brief description is provided for the isolated species.

E-Mail : Mohanadkma@yahoo.com
INTRODUCTION

Grapevine *Vitis vinifera* L. is the most widely planted fruit crop worldwide and is cultivated on all continents except Antarctica (Mullins *et al.*, 1992). The area under plantation in Iraq is 240,000 hectares, and generate an annual crop of 350,000 tons grape (FAO, 1996). It is an economically important fruit crop globally. In Basrah Province Southern Iraq, grapevines are mainly cultivated in the Abo-Alkasib area which is located near Shatt Al-Arab river and dominated by date palm plantations.

In a survey of grapevines grown in Basrah, several vineyards were found to suffer from dieback disease that killed the plants. The water salinity of the Shatt Al-Arab at Qarmatt Ali was found to be approximately 0.5 p.p.t but in recent years it was noted as being more than 2 p.p.t. Several of the contributing factors for the increase in salinity are likely to have been the great reduction in levels, continuous flushing of salts from irrigated land via drainage canals into the river and the linkage of the southern part of Haur Al-Hammar (at Qarmat Ali) to a new canal, the “Al-Basrah Canal”, which run parallel to Shatt Al-Arab river into the Arabian Gulf (Bedair, 2006). Many environmental stress factors weaken plant hosts and make them more susceptible to infection by fungi. Out of these factors is the salinity which may contribute to reduce plant growth through the effect on physiological functions such as photosynthesis respiration and absorption (Bernstein and Hayward, 1958; Leonova and Shveyalova, 1970; Alsaidi, 2000), and increase the vulnerability to organism. Reckhaus (1987) considered that stress factors enhanced the seve-
rity of dieback disease caused by Botryosphaeriaceae species.

Species of the Botryosphaeriaceae are economically important opportunistic pathogens, as well as being saprophytes on decaying plant materials, whereas others are entirely endophytic (Barr, 1987; Smith et al. 1996; Denman et al., 2000). Many of these fungi cause canker and dieback diseases on numerous plant hosts throughout the world (von Arx, 1987; Burgess et al., 2006; Slippers and Wingfield, 2007). The taxonomy and identification of Botryosphaeriaceae is mostly based on anamorphic descriptions, because the teleomorphs are observed rarely in nature and seldom produced in culture (Jacobs and Rehner, 1998; Denman et al. 2000; Zhou and Stanosz, 2001; Phillips, 2002; Crous et al., 2006; Schoch et al., 2006). In the recent studies on the basis of 18s rDNA sequence data and multi-gene approach, 16 genera were related to Botryosphaeriaceae (Crous et al., 2006; Damm et al., 2007; Phillips et al., 2008). The anamorphic states of this group, including Diplodia, Lasiodiplodia, Neofusicoccum and Neoscytalidium have been reported from infected grapevines as a causal agents of cankers, dieback, bud mortality and bunch rot (Phillips, 2002; van Niekerk et al., 2004; Luque et al., 2005; Taylor et al., 2005; Úrbez Torres et al., 2006a, 2008). Species in a Botryosphaeriaceae have been reported to cause various dieback symptoms in grapevines. These symptoms include wood streaking, shoot dieback, bud necrosis, cane bleaching and graft failure (Lohoczky, 1974; Larignon et al. 2001; Phillips, 2002; Taylor et al., 2005; Úrbez-Torres et al., 2008b, 2008). The symptoms are characterized by the slow development and their severity increased with age of the grapevines that are 8 or more year old or that are subjected to stress (Boyer, 1995; Larignon and
Dubos, 2001). Some of the symptoms, especially brown wood streaking, are resemble those found in trunks and arms affected by Petri disease and esca complex caused by *Phaeomoniella chlamydospora* (Mugnai *et al.*, 1999; Phillips, 2002). Various species in this family can be isolated from grapevine are only weakly pathogenic or entirely non-pathogenic (Phillips, 2002).

Lasiodiplodia theobromae (Pat.) Griffon and Maubl., is a common plant pathogen in the tropical and subtropical areas of the world. It is associated with various diseases including cankers, dieback and root rot on a wide range of hosts (Punithalingam, 1980). Vascular cankers and grapevine dieback caused by *Lasiodiplodia theobromae* first were reported in Egypt in 1972 (El-Goorani and El-Meleigi, 1972). After fifteen years, a field study carried out in California showed *L. theobromae* to be an important grapevine pathogen (Laevitt and Munnecke, 1987). Recent studies showed that the fungus has been a significant pathogen associated with declining of grapevine in south Africa and Australia (van Neikerk *et al.*, 2004; Taylor *et al.*, 2005; wood and wood, 2005). A study conducted in vineyards of Sonora and Baja California revealed that perennial cankers and consequent grapevine dieback caused by *L. theobromae* and *Diplodia seriata* were a major problem in the most important grape-production areas of Mexico (Úrbez-Torres, 2008). Canker of grapevine caused by a Botryosphaeriaceae species first was reported in Sicily, and the first reported of infections caused by *L. theobromae* on grapevine in Italy (Berruano *et al.*, 2008).

Neoscytalidium was introduced by Crous and Slippers as a new genus in the Botryosphaeriaceae and the type species designated is *Neoscytalidium dimidiatum* (Penz.) Crous and Slippers, comb. nov.
(Crous et al., 2006). *Neoscytalidium dimidiatum* has been reported on diverse woody plants, frequently as *Hendersonula toruloidea* (Punithalingam and Waterston, 1970; Sutton and Dyko, 1989; Farr et al., 2004). Although reported to be cosmopolitan, the disease caused by this fungus tend to occur in tropical countries as well as California (Farr et al., 2005). Symptoms include gummosis and dieback of stone fruit trees in Egypt (Nattrass, 1933), branch wilt, decline and death on citrus in Iran (Alizadeh et al., 2000), leaf spot diseases in India (Chandra, 1974) and a canker and a dieback of *Eucalyptus* in Arizona (Matheron and Sigler, 1993). So far little attention has been given to mycotic grapevine diseases in Iraq. Early research by Natour and Ahmed (1969) reported that *Hendersonula toruloidea* caused branch wilt of grapevines, in the central region of Iraq. Recently Saido (2007) isolated some fungi associated with grapevine decline in Duhok Province, Northern Iraq, includes particularly *Botryosphaeria* spp., *Phaeoacercemosium aleophilum* and *Cylindrocarpon destructans*. These represented new records for Iraq. Therefore, this is the first report on fungi grapevine diseases in Basrah region, Southern Iraq.

2. MATERIALS AND METHODS

Symptomatic grapevine parts (arms, canes and leaves) were collected from several vineyards in Abo-alkasib area, Basrah Province, Southern Iraq. Small pieces of infected tissue, taken from the margin between necrotic and apparently healthy tissue, were surface sterilized with 5% sodium hypochlorite for 5 min. and rinsed three times with sterile distilled water. The surface-sterilized pieces were placed in Petri dishes lined with sterilized,
moist filter paper and 10 pieces were placed in Petri plates containing potato dextrose agar (PDA) (Himedia Laboratories Pvt. Ltd. -india) supplemented with chloramphenicol (50 µg/ml) to prevent bacterial growth. All plates were incubated at 25 °C until fungal propagules were observed. Pure cultures of each isolate were obtained by excising a hyphal tip on to plates of potato dextrose agar. In order to enhance sporulation, cultures were placed on 2% water agar bearing pieces of autoclaved grapevine canes and inoculated at 25 °C. Isolates were examined weekly for the formation of pycnidia and conidia. Isolated fungi were identified based on the morphological characters in culture and on natural substrates.

2.1 Molecular phylogenetic characterization

2.1.1 DNA isolation

Total genomic DNA was isolated from fresh mycelium according to a miniprep protocol described by Cenis (1992). Pure cultures of each isolate were inoculated onto 500 µl of liquid potato dextrose medium (Difco Laboratories Ltd., Surrey, United Kingdom) and incubated at 25°C for 72h. The mycelial mat was pelleted by centrifugation at 13,000rpm for 5min and was washed with 500µl of Tris-EDTA, then homogenized by hand in 300 µl of extraction buffer (200 mM Tris-HCl [pH 8.5], 250mM NaCl, 25mM EDTA, and 0.5% sodium dodecyl sulfate) for 5 min. 150 µl of 3 M sodium acetate (pH 5.2) was added, and the mixture was cooled to 20°C for 10 min. Fungal debris was pelleted by centrifugation at 13,000rpm for 5min, the supernatant transferred to a fresh tube, and an equal volume of isopropanol was added. DNA was then pelleted by centrifugation at 13,000rpm for 10min and washed
with 70% ethanol, then air dried and resuspended in 100 μl TE (10 mM Tris-HCl [pH 8.0], 1 mM EDTA). 10 mg/ml of RNase was added at 37°C for 45 min. to digest the RNA. The DNA quantified using Eppendorf® BioPhotometer and was stored at -20°C.

2.1.2 PCR amplification of ribosomal DNA regions

The universal primers ITS1-F (5’CTTGATGGTCAATTTAGAGGA GTAA-3’) and ITS4 (5’-TCCTCCGCTTATTGATATGC -3’) were used to amplify the ITS/5.8S coding rDNA gene regions as described by White et al. (1990). Each PCR reaction mixture contained 5 ng of genomic DNA, 1 μM of each primer, PCR reaction buffer (50 mM KCl, 50 mM Tris-HCl; [pH 8.3] 0.1 mg/ml bovine serum albumen), 3 mM MgCl₂, 200 μM of each dNTP, 2.5 U of Taq DNA polymerase (Promega) and autoclaved d₂H₂O to make-up the total volume of 50 μl. The PCR protocol consisted of an initial denaturation step at 95°C for 2 min, followed by 30 cycles of 94°C for 1 min, 54°C for 30 s, and 72°C for 1 min and a final extension at 72 °C for 10 min. The PCR products were separated on a 1.2% agarose gel, stained with ethidium bromide and viewed with ultraviolet light. PCR amplified fragments were purified using QIAquick PCR (Qiagen, Amersham, Piscataway, NJ, USA) columns following the manufacturer’s instructions and negative control (PCR reagent mixture) was included in the amplification.

2.1.3 DNA sequencing

PCR products were purified using the Promega gel and PCR clean-up system. The instructions of the QIAquick Gel extraction kit (QIAGEN) were followed and directly cycle sequenced in
both directions using the BigDye Ready Reaction Kit (PE Applied Biosystems, Foster City, California) on an ABI Prism automated DNA sequencer (model 377, version 2.1.1; Applied Biosystems Warrington, United Kingdom) with the same primers.

2.1.4 Phylogenetic analysis

The sequence results from all samples when compared to DNA database demonstrated that they were derived from the fungal ITS regions. To identify the species, a sequence similarity search was performed using BLAST (Basic Local Alignment Search Tool) at NCBI website (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The most similar 100 sequences were downloaded from NCBI and aligned using ClustalX2. The phylogenetic tree was viewed using MEGA 5.0.

2.2 Pathogenicity test

Pathogenicity tests were made on 2 years old grapevine plants of the Abbassi cultivar. In each experiment, apparently healthy looking plants were selected and specimens were taken from their arm, cane and leaves to confirm the absence of the test pathogens. Plants found infected with the test pathogen(s) were not used in the study. A cut in the arm, cane and leaf was made using a sterile sharp blade and inoculated by spraying either 40 ml of conidial suspension (5 x 10^6 conidia ml⁻¹)(as above) or sterile water (controls) using an atomizer. The conidia quantified microscopically using a Neuberger chamber and adjusted to 10^6 conidia/ml with d₂H₂O containing 0.02% Tween 20. Plants were monitored for one week to observe the development of disease symptoms. To satisfy Koch’s postulates, small pieces of necrotic tissue were cut from the edge of each lesion, surface sterilized for 5 min. with 5% sodium hypochlorite, washed three times with sterile distilled water and placed on
PDA Petri plates, then incubated at 25 °C. After 4 days of inoculation, small pieces/tissues were examined for lesions/disease symptoms.

3. RESULTS AND DISCUSSION

3.1 Morphology

Two organism were consistently isolated from plant parts showing dieback symptoms. Based on the morphological characters, isolates from the Basrah Region of Southern Iraq were identified as L. theobromae and N. dimidiatum. The identification of the isolates was performed using the relevant publications, Ellis (1971), Punithalingamm (1976, 1980), Sutton and Dyko (1989), Crous et al. (2006) and Alves et al. (2008). Colonies of *Lasiodiplodia theobromae* white, becomign dark oliveaceous with dense aerial mycelium (Fig.1,A). Pycnidia were dark brown to black formed on grapevine canes after 20 days in culture (Fig.1,B). Conidiogenous cells hyaline with cylindrical hyaline and aseptate paraphyses (Fig.1,D). Conidia were initially hyaline becoming dark brown with one septa when mature and longitudinal striations, 17-23x10-12 μm (Figs.1,C,D). This is first record of this fungus as a pathogen of grapevines in Iraq. The climatic conditions of Basrah city is mostly humid with high temperatures. These conditions might be favorable for infection by this pathogen. This result is agreed with other studies (Punithalingam, 1980; Leavitt, 1987; Hewitt, 1988; Úrbez-Torres, 2006a, 2008; Burruano et al., 2008). This fungus has been isolated from grapevine showing decline and dieback symptoms in Egypt (El-Goorani and El-Meleigi, 1992), Californi (Leavitt, 1987), Arezona, Mexico (Leavitt, 1990), Portugal (Phillips, 1998, 2002), Australia (Castillo-Pando et al., 2001; Taylor et al., 2005), south Africa (van Niekerk et
A.H. Al-Saadoon et al.

First report of grapevine...

Spain (Úrbez-Torres, 2006b; Aroca et al., 2008; Martin et al., 2009), Argentina (Alves et al., 2008) and Bolivia (Kaiser et al., 2009). It was also reported on other hosts in adjacent countries, including mango in Oman and Pakistan (Adawi et al., 2003; Khanzada et al., 2004), apricot and peaches in China (Li et al., 1995).

Fig. 1. Lasiodiplodia theobromae. A. Growth on potato dextrose agar (PDA) after 10 days. B. Longitudinal section of infected shoot of grapevine showing pycnidium with 2-celled dark pycnidiospores. C. Conidia mature dark brown with one septum. D. Paraphyses cylindrical, aseptate, hyaline. Conidia produced initially hyaline and aseptate, subovoid to ellipsoid-ovoid bar= 10μm.
The hyphae of *Neoscytalidium dimidiatum* mid to dark brown, pycnidia were dark brown to black formed on infected grapevine canes. Chains of arthroconidia were developed from unidentified, brown hyphae, conidia were cylindrical, brown, 0-2 septate at maturity, 4-6x7-12µm (Fig. 2, B). *N. dimidiatum* has been reported to cause branch wilt of grape in Baghdad, central Iraq (Natour & Ahmed, 1969). This is the first time to record of this fungus as pathogen of grapevine in Basrah province southern Iraq. *N. dimidiatum* has been reported from *Andansonia perrieri* in Australia (Sakalidis et al., 2011), citrus in Iran and Italy (Alizadeh et al., 2000; Polizzi et al., 2009), almond in California (Inderbitzin et al., 2010) and *Prunus* spp. in Egypt (Farr et al., 2005), mango in Niger (Pandey et al., 1981; Reckhaus and Adamous, 1987).

Fig. 2. A. *Lasiodiplodia theobromae*. Pycnidia dark brown to black formed on grapevine canes. B. *Neoscytalidium dimidiatum*. Hyphae and chains of orthroconidia. Bar = 4µm
3.2 Phylogenetic analyses

The PCR-based method is considered a quicker and more sensitive technique compared to morphological identification, with high discriminative ability between morphologically similar species.

The ITS (the universal transcribed spacer) regions are typically variable and quite informative (Diaz and Fell, 2004). The universal fungal primers (ITS1/ITS4) successfully amplified the genomic DNA for all isolates that we tested.

The sequence results demonstrated that they were derived from the fungal ITS regions when compared to the database of sequences on GenBank. BLAST results showed the most identical sequence was ITS/5.8S rDNA region of *L. theobromae* and *N. dimidiatum* showing 100% identity. The results of sequence similarity indicated that the isolated strains are *L. theobromae* and *N. dimidiatum*.

3.3 Pathogenicity tests

Grapevine plants that were inoculated with spore suspensions of *L. theobromae* and *N. dimidiatum* developed clear dieback symptoms after approximately 2 weeks (fig.3 A, C, D). No symptoms were observed on unionculated plants (control) (fig.3,B).

The most obvious symptoms on plants inoculated with *L. theobromae* and *N. dimidiatum* was the presence of dark wood or discoloration observed in the green arms and canes.

During the trial period, there were no obvious symptoms of *L. theobromae* observed on leaves of inoculated plants. This agrees with previous studies conducted in California, Portugal and Mexico, that found that there were no foliar symptoms associated with this pathogen (Phillips, 1998; Urbez-Torres et al. 2006, 2008). The present study showed that *L.
Theobromae was more virulent than N. dimidiatum. This result is in agreement with a previous studies conducted in California, south Africa and Mexico in which L. theobromae was shown to be one of the most virulent species (Leavitt, 1990; van Niekerk et al., 2004; Úrbez-Torres, 2008). However, in western Australia L. theobromae isolates were avirulent or only weakly pathogenic in inoculated Red Globe mature canes (Taylor et al., 2005).

L. theobromae and N. dimidiatum may create a serious dieback disease to vineyards in Iraq, particularly with the relationship to the environmental conditions. Pycnidia of L. theobromae started developing on inoculated canes and trunk about 2 weeks after inoculation (fig.3 A.C.D). Plants inoculated with N. dimidiatum began to desiccate and lost their green color from the apex toward the base 7 days after inoculation.

After 4 weeks the entire seedling turned dark brown (fig.3, A, C, D). Lasiodiplodia theobromae and N. dimidiatum were reisolated from the artificially inoculated plants. Whereas no fungi were reisolated from the control treatments.

It was worth mentioning that accurate identification of botryosphaeriaceae species is necessary to monitor global distribution of these pathogens, contribute to appropriate application of quarantine decisions and develop an effective disease management strategies, because these species differ considerably in their interactions with different hosts and environmental conditions (Britton and Hendrix, 1986; Denman et al., 2003).

This work represent the first molecular detection and pathogenicity of L. theobromae and N. dimidiatum on grapevine in this part of the world and is still preliminary which may be useful for a further surveys to correlate
A.H. Al-Saadoon et al. First report of grapevine botryosphaeriaceae species with the different disease in vineyards of Iraq.

Fig. 3. Grapevine plant inoculated with spore suspensions of [A.D. Lasiodiplodia theobromae C. Neocystalidium dimidiatum] developed clear dieback symptoms approximately 2 weeks after inoculation. Darkened wood or discoloration was observed in the green arms and canes B. Grapevine plant uninoculated with spore suspensions of L. theobromae and N. dimidiatum.
REFERENCES

Barr ME. (1987). Prodromus to class Loculoascomycetes, Amherst, Massachussees: Published by the author.

Lehoczky J. (1974). Black dead arm disease of grapevine caused...

Leonova TC Shevyalova. 1970. Incorporation of s35 methionine in to free amino acids in plant leaves under salinization of the medium. *Sov plant Physiol, 37*: 689-693.

Phillips AJL. (1998). *Botryosphaeria dothidea* and other fungi

Reckhaus P and Adamous I.(1987). *Hendersonula* dieback

أول تسجيل للفطرين كمسببين لمرض الوفاة الرعوي على الغب في محافظة البصرة جنوب العراق

عبد الله حمود عبد الله السعدون، مهند خلف محمد أمين، محمد عبد الرزاق حميد، عدنان عيسى البدران

قسم علوم الحياة، كلية العلوم، جامعة البصرة

مركز أبحاث النخيل، جامعة البصرة

الخلاصة

تعاني بعض نباتات الغب في محافظة البصرة جنوب العراق من مرض Vitis vinifira L. الموت الرعوي، في هذه الدراسة تم عزل الفطرين من نباتات غب ظهرت عليها أعراض مرض الوفاة الرعوي Neoscytalidium dimidiatum. صنف الفطرين مظهراً و جينياً و تبينت نتائج اختبار الامراضية أن الفطرين سبباً الموت الرعوي لنفس النبات عند التلفييا بهما، بعد تسجيل الفطر L.theobromae أول تسجيل له في العراق كمرض لنبات الغب بينما بعد تسجيل الفطر الثاني N.dimidiatum أول في البصرة كممرض لنبات الغب.