Generalized mean function for n-variable

Hadeel Ali Hassan Shubber
Thi-Qar University/College of Education for Pure Sciences
Department of Mathematics/Iraq
www.hadeelali2007@yahoo.com

ABSTRACT:

In this work we present the theory of an integral mean for generalized GN'-function. We will show under what conditions the mean function is a GN'-function and satisfies a Δ-condition. Moreover, we examine how the minimizing points in the definition of the mean function affect a basic property of the ordinary integral mean.

Keywords : Generalized GN'-function for n-variable, Δ-condition, Generalized mean function.

1. Introduction and Basic Concept:

In what follows T will denote a space of point with σ-finite measure and E^n a n-dimensional Euclidean space.

Definition 1.1 Orlicz (1932)

Orlicz space $L_M = L_M(\Omega, \mu)$ is a Banach space consisting of all $f \in S(\Omega, \mu)$ where $S(\Omega, \mu)$ is a ring of all measurable functions on the space with bounded measure space (Ω, μ).

such that

$$\int_{\Omega} M(|f|) d\mu < \infty,$$

With the Luxemburg Nakano norm

$$\|f\|_M = \inf \{ \lambda > 0 : \int_{\Omega} \frac{|f|}{\lambda} d\mu \leq 1 \}$$
Generalized mean function for n-variable

Orlicz spaces L^m are natural generalization of L^p space, where $L^p(I)$ consists of all the measurable functions f defined on the interval I for which

$$\left(\int_I |f|^p\right)^{\frac{1}{p}} < \infty \quad \text{Corothers(2000)}$$

They have very rich topological and geometrical structures; they may possess peculiar properties that do not occur in an ordinary L^p space.

Definition 1.2 Borwein (1997)

Let $M : I \rightarrow \mathbb{R}$ be defined on some interval of the real line \mathbb{R}. A function M is called convex if

$$M\left(\frac{u_1 + u_2}{2}\right) \leq \frac{1}{2} \left(M(u_1) + M(u_2)\right) \quad (1)$$

for all $u_1, u_2 \in I$

we can generalize the inequality (1) for any u_1, u_2, \ldots, u_n by

$$M\left(\frac{u_1 + u_2 + \ldots + u_n}{n}\right) \leq \frac{1}{n} \left(M(u_1) + \ldots + M(u_n)\right) \quad (2)$$

Definition 1.3 Hassen(2007)

Let $M(t, x, y)$ be a real valued non-negative function defined on $T \times E^n \times E^n$ such that:

(i) $M(t, x, y) = 0$ if and only if x, y are the zero vectors $x, y \in E^n$, $\forall t \in T$

(ii) $M(t, x, y)$ is a continuous convex function of x, y for each t and a measurable function of t for each x, y

(iii) For each $t \in T$, \[\lim_{\|x\|, \|y\| \to \infty} \frac{M(t, x, y)}{\|x\|\|y\|} = \infty, \] and...
There are constants $d \geq 0$ and $d_i \geq 0$ such that

$$\inf_{t \in \mathbb{R}} \inf_{c \geq d} k(t, c, c') > 0$$ \hspace{1cm} (1)$$

Where

$$k(t, c, c') = \frac{M(t, c, c')}{\overline{M}(t, c, c')}$$

$$\overline{M}(t, c, c') = \sup_{x \in \mathbb{R}, |x| = c} M(t, x, y), M(t, c, c') = \inf_{x \in \mathbb{R}, |x| = c} M(t, x, y)$$

and if $d > 0$ and $d_i > 0$, then $\overline{M}(t, d, d_i)$ is an integrable function of t. We call the function satisfying the properties (i)-(iv) a generalized N*-function or a GN*-function.

Definition 1.4:

Let $M(t, x_1, x_2, \ldots, x_n)$ be a real valued non-negative function defined on $T \times E^n \times E^n \times \ldots \times E^n$ such that:

(i) $M(t, x_1, x_2, \ldots, x_n) = 0$ if and only if x_1, x_2, \ldots, x_n are the zero vectors $x_1, x_2, \ldots, x_n \in E^n$, $\forall t \in T$

(ii) $M(t, x_1, x_2, \ldots, x_n)$ is a continuous convex function of x_1, x_2, \ldots, x_n for each t and a measurable function of t for each x_1, x_2, \ldots, x_n,

(iii) For each $t \in T$, $\lim_{\|x\| \to \infty} \frac{M(t, x_1, x_2, \ldots, x_n)}{\|x_1\| \|x_2\| \ldots \|x_n\|} = \infty$, and

(iv) There are constants $d_1 \geq 0, d_2 \geq 0, \ldots, d_n \geq 0$ such that

$$\inf_{t \in \mathbb{R}} \inf_{c \geq d_1} \inf_{c' \geq d_2} k(t, c, c', \ldots, c_n) > 0$$ \hspace{1cm} (1)$$
Generalized mean function for n-variable

Where

\[k(t, c_1, c_2, \ldots, c_n) = \frac{M(t, c_1, c_2, \ldots, c_n)}{M(t, c_1, c_2, \ldots, c_n)} \]

\[\overline{M}(t, x_1, c_2, \ldots, c_n) = \sup_{\|s\|_1 = 1} M(t, x_1, x_2, \ldots, x_n), \]

\[\underline{M}(t, c_1, c_2, \ldots, c_n) = \inf_{\|s\|_2 = c_2} M(t, x_1, x_2, \ldots, x_n) \]

and if \(d_1 > 0, d_2 > 0, \ldots, d_n > 0 \), then \(\overline{M}(t, d_1, d_2, \ldots, d_n) \) is an integrable function of \(t \). We call the function satisfying the properties (i)-(iv) a generalized N'-function or a GN'-function.

Definition 1.5 Hassen (2010)

We say that a GN* -function \(M(t,x,y) \) satisfies a \(\Delta - \) condition if there exists a constant \(K \geq 2 \) and non-negative measurable functions \(\delta_1(t) \) and \(\delta_2(t) \) such that the function \(M(t,2\delta_1(t),2\delta_2(t)) \) is integrable over the domain \(T \) and such that for almost all \(t \) in \(T \) we have

\[M(t,2x,2y) \leq KM(t,x,y) \] \hspace{1cm} (1)

for all \(x \) and \(y \) satisfying \(|x| \geq \delta_1(t) \) and \(|y| \geq \delta_2(t) \).

We say that a GN*-function satisfies a \(\Delta_0 - \) condition if it satisfies a \(\Delta - \) condition with \(\delta_1(t) = 0 \) and \(\delta_2(t) = 0 \) for almost all \(t \) in \(T \).

In Definition 1.5 we could have used any constant \(\tau > 1 \) in place of the scalar 2 in (1).

Definition 1.6:

We say that a GN'-function \(\overline{M}(t,x_1, x_2, \ldots, x_n) \) satisfies a \(\Delta - \) condition if there exists a constant \(K \geq 2 \) and non-negative measurable functions \(\delta_1(t), \delta_2(t), \ldots, \)
$\delta_n(t)$ such that the function $M(t, 2\delta_1(t), 2\delta_2(t), \ldots, 2\delta_n(t))$ is integrable over the domain T and such that for almost all t in T we have

$$M(t, 2x_1, 2x_2, \ldots, 2x_n) \leq KM(t, x_1, x_2, \ldots, x_n)$$

(1)

for all x_1, x_2, \ldots, x_n satisfying $|x_1| \geq \delta_1(t), |x_2| \geq \delta_2(t), \ldots, |x_n| \geq \delta_n(t)$.

Thus, according to this definition, the statement above can be formulated as:

We say that a GN'-function satisfies a $\Delta_0 -$condition if it satisfies a $\Delta -$condition with $\delta_1(t) = 0, \delta_2(t) = 0, \ldots, \delta_n(t) = 0$ for almost all t in T.

In Definition 1.6 we could have used any constant $\tau > 1$ in place of the scalar 2 in (1).

Definition 1.7 Hassen (2007)

For each t in T and $h > 0$ let

$$M_h(t, x, y) = \int_{E^n} \int_{E^n} M(t, x + z, y + w)J_h(z)J_h(w)dzdw,$$

where $J_h(z)$ and $J_h(w)$ are non-negative, C^∞ function with compact support in a ball of a radius h such that $\int_{E^n} \int_{E^n} J_h(z)J_h(w)dtdw = 1$.

Moreover, let x_0 and y_0 are any tow points (depending on h, t) which satisfy the inequality

$$M_h(t, x_0, y_0) \leq M_h(t, x, y)$$

for all x and y in E^n. Then the function $\hat{M}_h(t, x, y)$ defined for each t in T and $h > 0$ by

$$\hat{M}_h(t, x, y) = M_h(t, x + x_0, y + y_0) - M_h(t, x_0, y_0)$$

is called a **mean function** for $M(t, x, y)$ relative to the minimizing point x_0 and y_0.

Definition 1.8:

For each t in T and $h > 0$ let
Generalized mean function for n-variable

\[M_h(t, x_1, x_2, \ldots, x_n) = \int \int \ldots \int M(t, x + y_1, x + y_2, \ldots, x + y_n) J_h(y_1) J_h(y_2) \ldots J_h(y_n) dy_1 dy_2 \ldots dy_n \]

where \(J_h(y_1), J_h(y_2), \ldots, J_h(y_n) \) are no negative, \(c^\infty \) function with compact support in a ball of a radius \(h \) such that

\[\int \int \ldots \int J_h(y_1) J_h(y_2) \ldots J_h(y_n) dt dt \ldots dt = 1. \]

Moreover, let \(x_{01}, x_{02}, \ldots, x_{0n} \) are any points (depending on \(h, t \)) which satisfy the inequality

\[M_h(t, x_{01}, x_{02}, \ldots, x_{0n}) \leq M_h(t, x_1, x_2, \ldots, x_n) \]

for all \(x_1, x_2, \ldots, x_n \) in \(E^n \). Then the function \(\hat{M}_h(t, x_1, x_2, \ldots, x_n) \) defined for each \(t \) in \(T \) and \(h > 0 \) by

\[\hat{M}_h(t, x_1, x_2, \ldots, x_n) = M_h(t, x_1 + x_{01}, x_2 + x_{02}, \ldots, x_n + x_{0n}) - M_h(t, x_{01}, x_{02}, \ldots, x_{0n}) \]

is called a mean function for \(M(t, x_1, x_2, \ldots, x_n) \) relative to the minimizing points \(x_{01}, x_{02}, \ldots, x_{0n} \).

Theorem 1.9 Hassen (2007)

If \(M(t, x, y) \) is a GN*-function for which \(\bar{M}(t, c, c') \) is integrable in \(t \) for each \(c \) and \(c' \), then \(\hat{M}_h(t, x, y) \) is a GN*-function.

Theorem 1.10 Hassen (2007)

If \(M(t, x, y) \) is a GN*-function satisfying a \(\Delta \)-condition and for which \(\bar{M}(t, c, c') \) is integrable in \(t \) for each \(c \) and \(c' \), then \(\hat{M}_h(t, x, y) \) satisfies a \(\Delta \)-condition.

Theorem 1.11 Hassen (2007)

For each \(h > 0 \) let \(x_0^h \) and \(y_0^h \) be the minimizing point of \(M_h(t, x, y) \)
defining $\hat{M}_h(t,x,y)$. Then for each t in T and each x, y in E^n, there exists $K(t,x,y)$ such that

$$
\lim_{h \to 0} \hat{M}_h(t,x,y) = M(t,x,y) + K(t,x,y) \lim_{h \to 0} |x^h_0| \lim_{h \to 0} |y^h_0|
$$

Corollary 1.12 Hassen (2007)

Suppose $M(t,x,y)$ is a GN*-function such that $M(t,x,y) = M(t,-x,-y)$. Then for each t in T and x, y in E^n, we have

$$
\lim_{h \to 0} M_h(t,x,y) = \hat{M}(t,x,y)
$$

Theorem 1.13 Hassen (2007)

The sets B and A_h are closed convex sets.

Theorem 1.14 Hassen (2007)

Let $B_e = \{(x, y) : M(t, x, y) < e\}$ for each t in T. Then for given any $e > 0$, there is a constant $h_0 > 0$, such that $A_h \subset B_e$ for each $h \leq h_0$.

Theorem 1.15 Hassen (2007)

Suppose $M(t,x,y)$ is a GN*-function which is strictly convex in x and y for each t. Then $h, A_h = \{(0,0)\}$ for each h.

Theorem 1.16 Hassen (2013)

A necessary and sufficient condition that (1.5.1) holds is that if

$$
\left| x_1 \right| \leq \left| y_1 \right|, \left| x_2 \right| \leq \left| y_2 \right|, ..., \left| x_n \right| \leq \left| y_n \right|
$$

then there exists constants $K \geq 1, d_1 \geq 0, d_2 \geq 0$.
Generalized mean function for n-variable

\[\ldots, d_n \geq 0 \text{ such that } M(t, x_1, x_2, \ldots, x_n) \leq KM(t, y_1, y_2, \ldots, y_n) \text{ for each } t \text{ in } T, \]

\[|x_1| \geq d_1, |x_2| \geq d_2, \ldots, |x_n| \geq d_n \]

Theorem 1.17 Hassen (2010)

A GN'-function \(M(t, x_1, x_2, \ldots, x_n) \) satisfies a \(\Delta \)-condition if and only if given any \(\tau > 1 \) there exists a constant \(K_\tau \geq 2 \) and a non-negative measurable functions \(\delta_1(t), \delta_2(t), \ldots, \delta_n(t) \) such that \(M(t, 2\delta_1(t), 2\delta_2(t), \ldots, 2\delta_n(t)) \) is integrable over \(T \) and such that for almost all \(t \) in \(T \) we have

\[M(t, \alpha_1, \alpha_2, \ldots, \alpha_n) \leq K_\tau M(t, x_1, x_2, \ldots, x_n), \quad (1) \]

whenever \(|x_1| \geq \delta_1(t) \), \(|x_2| \geq \delta_2(t) \), \ldots, \(|x_n| \geq \delta_n(t) \).

2. Generalized mean function:

Theorem 2.1:

If \(M(t, x_1, x_2, \ldots, x_n) \) is a GN'-function for which \(M(t, c_1, c_2, \ldots, c_n) \) is integrable in \(t \) for each \(c_1, c_2, \ldots, c_n \), then \(\hat{M}_h(t, x_1, x_2, \ldots, x_n) \) is a GN'-function.

Proof:

We will show this result by justifying conditions (i)-(iv) of the definition 3.1.1. By hypothesis and the choice of \(x_{01}, x_{02}, \ldots, x_{0n} \), we have for each \(h, \)

\[\hat{M}_h(t, x_1, x_2, \ldots, x_n) \geq 0 \quad \text{and} \quad \hat{M}_h(t,0,0,\ldots,0) = 0. \]

On the other hand, if \(x_1 \neq 0, x_2 \neq 0, \ldots, x_n \neq 0 \), then \(M(t, x_1, x_2, \ldots, x_n) > 0 \), and hence there are constants \(h_{01}, h_{02}, \ldots, h_{0n} \) such that

\[a = \inf_{w} M(t, x_1 + w_1, x_2 + w_2, \ldots, x_n + w_n) > 0 \]
However, since $M(t, x_1, x_2, \ldots, x_n) = 0$ if and only if $x_1 = 0, x_2 = 0, \ldots, x_n = 0$, the minimizing points x_{o1} tends to zero, x_{o2} tends to zero, ..., x_{on} tends to zero as h tends to zero. Therefore, we can choose $g_{o1} \leq h_{o1}, g_{o2} \leq h_{o2}, \ldots, g_{on} \leq h_{on}$ such that if $h \leq g_{o1}, h \leq g_{o2}, \ldots, h \leq g_{on}$ then $M(t, x_{o1} + y_{o1}, x_{o2} + y_{o2}, \ldots, x_{on} + y_{on}) < a$ for all $y_{o1}, y_{o2}, \ldots, y_{on}$ for which $|x_{o1} + y_{o1}| < h, |x_{o2} + y_{o2}| < h, \ldots, |x_{on} + y_{on}| < h$ for this $g_{o1}, g_{o2}, \ldots, g_{on}$ we obtain the inequality

$$M(t, x_1 + x_{o1} + x_{o2} + y_{o2}, \ldots, x_n + x_{on} + y_{on}) \geq \inf_{w \leq g_{o1}} \left[M(t, x_1 + w, x_2 + w, \ldots, x_n + w) \right] \geq a$$

$$> M(t, x_{o1} + y_{o1}, x_{o2} + y_{o2}, \ldots, x_{on} + y_{on})$$

whenever $|x_{o1} + y_{o1}| \leq g_{o1}, |x_{o2} + y_{o2}| \leq g_{o2}, \ldots, |x_{on} + y_{on}| \leq g_{on}. This means for some $h \leq g_{o1}, h \leq g_{o2}, \ldots, h \leq g_{on}$ we have

$$M(t, x_1 + x_{o1} + y_{o1}, x_2 + x_{o2} + y_{o2}, \ldots, x_n + x_{on} + y_{on}) > M(t, x_{o1} + y_{o1}, x_{o2} + y_{o2}, \ldots, x_{on} + y_{on})$$

$$M_h(t, x_1 + x_{o1}, x_2 + x_{o2}, \ldots, x_n + x_{on}) > M_h(t, x_{o1}, x_{o2}, \ldots, x_{on})$$

or $\hat{M}_h(t, x_1, x_2, \ldots, x_n) > 0$ if $x_1 \neq 0, x_2 \neq 0, \ldots, x_n \neq 0$ which proves property (i).

Properties (ii) and (iii) for $\hat{M}_h(t, x_1, x_2, \ldots, x_n)$ follow easily from the same properties for $M(t, x_1, x_2, \ldots, x_n)$. Let us now show (iv). By assumption, there are constants $d_1 \geq 0, d_2 \geq 0, \ldots, d_n \geq 0$ such that

$$\tau(t)\overline{M}(t, c_1, c_2, \ldots, c_n) \leq \overline{M}(t, c_1, c_2, \ldots, c_n) \leq \overline{M}(t, c_1, c_2, \ldots, c_n)$$

(1)
Generalized mean function for \(n \)-variable

for all \(c_1 \geq d_1, c_2 \geq d_2, \ldots, c_n \geq d_n \). Furthermore, it is not difficult to show that for all \(c \) and \(c' \) we have

\[
\bar{M}(t, c_1, c_2, \ldots, c_n) \geq \sup_{1 \leq i \leq n} M(t, x_i, x_i, \ldots, x_i) \quad (2)
\]

and for some fixed \(w_1, w_2, \ldots, w_n \)

\[
\inf_{1 \leq i \leq n} M(t, x_i + w_i \cdot x_i, x_i + w_i \cdot x_i, \ldots, x_i + w_i \cdot x_i) \leq \inf_{1 \leq i \leq n} M(t, x_i + w_i, x_i + w_i, \ldots, x_i + w_i) \quad (3)
\]

By using (2), we obtain (for each \(t \) in \(T \)) that

\[
\tau(t) \sup_{1 \leq i \leq n} M(t, w_i, w_i, \ldots, w_i) \leq \tau(t) \sup_{1 \leq i \leq n} M(t, r_i, r_i, \ldots, r_i) \leq \sup_{1 \leq i \leq n} M(t, r_i, r_i, \ldots, r_i) \quad (4)
\]

where \(w_i = x_i + x_{0i} + r_i \) for \(i = 1 \) to \(n \). On the other hand, by (1) and (3), we achieve

\[
\tau(t) \sup_{1 \leq i \leq n} M(t, w_i, w_i, \ldots, w_i) \leq \inf_{1 \leq i \leq n} M(t, w_i, w_i, \ldots, w_i) \leq \inf_{1 \leq i \leq n} M(t, x_i + x_{0i} + r_i, x_i + x_{0i} + r_i, \ldots, x_i + x_{0i} + r_i) < \inf_{1 \leq i \leq n} M(t, x_i + x_{0i} + r_i, x_i + x_{0i} + r_i, \ldots, x_i + x_{0i} + r_i) \quad (5)
\]
If we combine (4) and (5), then for all \(c_i \geq d_i \) for \(i = 1 \) to \(n \) and we arrive at

\[
\tau(t) \sup \frac{M(t, x_1 + x_{01} + r_1, x_2 + x_{02} + r_2, \ldots, x_n + x_{0n} + r_n)}{n} \leq \inf \frac{M(t, x_1 + x_{01} + r_1, x_2 + x_{02} + r_2, \ldots, x_n + x_{0n} + r_n)}{n}
\]

for \(1 \leq i \leq n \)

From this inequality, we obtain

\[
\inf \frac{\hat{M}_h(t, x, x, \ldots, x)}{n} \geq \int \ldots \int \inf \frac{M(t, x + x + r, x + x + r, \ldots, x + x + r)}{n}
\]

for \(1 \leq i \leq n \)

\[
1 \leq i \leq n
\]

\[
- M(t, x_1 + x_{01} + r_1, x_2 + x_{02} + r_2, \ldots, x_n + x_{0n} + r_n) J_h(r) J_h(r) \ldots J_h(r) dr \ldots dr
\]

\[
\geq \int \ldots \int \{\tau(t) \sup \frac{M(t, x + x + r, x + x + r, \ldots, x + x + r)}{n}
\]

for \(1 \leq i \leq n \)

\[
M(t, x_1 + x_{01} + r_1, x_2 + x_{02} + r_2, \ldots, x_n + x_{0n} + r_n) J_h(r) J_h(r) \ldots J_h(r) dr \ldots dr
\]

and

\[
\sup \frac{\hat{M}_h(t, x, x, \ldots, x)}{n} \leq \int \ldots \int \sup M(t, x_1 + x_{01} + r_1, x_2 + x_{02} + r_2, \ldots, x_n + x_{0n} + r_n) J_h(r) J_h(r) \ldots J_h(r) dr \ldots dr
\]

Moreover, since \(\lim_{c_i \to \infty} \sup \frac{M(t, x_1 + x_{01} + r_1, x_2 + x_{02} + r_2, \ldots, x_n + x_{0n} + r_n)}{n} = \infty \)

for fixed \(x_{0i}, r_i \) for \(1 \leq i \leq n \) such that \(|r_i| \leq h_i \) for \(1 \leq i \leq n \) given
Generalized mean function for n-variable

\[K_1(t) = 2\sup_{\|r\| \leq h} M(t, x_{01} + r_1, x_{02} + r_2, \ldots, x_{0n} + r_n) / \inf_{\|\tau\|} \tau(t) \]

there are \(d_i > 0, 1 \leq i \leq n\) such that if \(c_i \geq d_i, 1 \leq i \leq n\), then

\[\sup_{\|x\| = c_i} \frac{M(t, x_1 + x_{01} + r_1, x_2 + x_{02} + r_2, \ldots, x_n + x_{0n} + r_n)}{h} \geq K_1. \]

Therefore, by using (3.3.8) and (3.3.9), we achieve the inequalities

\[\inf_{\|x\| = c_i} \frac{\hat{\Delta}_i(t, x, x_1, x_2, \ldots, x_n)}{h} \geq \tau(t) - \frac{1}{2} \inf_{\|\tau\|} \tau(t) \]

\[(8)\]

for all \(c_i \geq d_{0i} = \max(d_i, d_i', x_{0i})\). Taking the infimum of both sides of (2.1.8) over \(t\), shows the first part of the property (iv). To show the latter part, assume \(d_{0i} > 0, 1 \leq i \leq n\) and then \(\sup_{\|x\| = d_{0i}} \hat{\Delta}_i(t, x_1, x_2, \ldots, x_n)\) is integrable over \(t\) in \(T\) since

\[\inf_{\|x\| = d_{0i}} \sup_{\|\tau\|} M(t, x_1 + x_{01} + r_1, x_2 + x_{02} + r_2, \ldots, x_n + x_{0n} + r_n) \geq \tau(t) - \frac{1}{2} \inf_{\|\tau\|} \tau(t) \]

it is bounded by the integrable function \(\hat{\Delta}_i(t, x_1, x_2, \ldots, x_n)\) where \(d_{i2} = d_{0i} + |x_{0i}| + h\). This proves property (iv) and the theorem. ■

In the next theorem we show under what condition \(\hat{\Delta}_i(t, x_1, x_2, \ldots, x_n)\) satisfies a \(\Delta - \) condition.
Theorem 2.2:

If $M(t, x_1, x_2, \ldots, x_n)$ is a GN'-function satisfying a $\Delta-$condition and for which $\overline{M}(t, c_1, c_2, \ldots, c_n)$ is integrable in t for each c_1, c_2, \ldots, c_n then $\hat{M}_h(t, x_1, x_2, \ldots, x_n)$ satisfies a $\Delta-$condition.

Proof:

It suffices to show that $M_h(t, x_1, x_2, \ldots, x_n)$ satisfies a $\Delta-$condition.

For, $\hat{M}_h(t, x_1, x_2, \ldots, x_n)$ is the sum of a constant and a translation of $M_h(t, x_1, x_2, \ldots, x_n)$ and neither of these operations affects the growth condition. Let us observe first that if $|x_i| \geq 2$ for $1 \leq i \leq n, |z_i| \leq h_1$ for $1 \leq i \leq n$ then $|2x_i + z_i| \leq |3x_i + z_i|$ for $1 \leq i \leq n$. Hence, by Theorem (1.16), there are constants $K \geq 1$ and $d_1 \geq 0$ such that

$$M_h(t, 2x_1, 2x_2, \ldots, 2x_n) \leq k \int \ldots \int_{E^n} M(t, 3(x_1 + z_1), 3(x_2 + z_2), \ldots, 3(x_n + z_n))$$

$$K_3 M_h(t, x_1, x_2, \ldots, x_n) \int_{h_1} J_h(z_1) \int_{h_2} J_h(z_2) \ldots \int_{h_n} J_h(z_n) dz_1 dz_2 \ldots dz_n$$

for all x_i for $1 \leq i \leq n$ such that $|x_i| \geq d_2$ for $1 \leq i \leq n$ and $d_2 = \max(d_1, 2)$. On the other hand, by theorem (1.17),

$$\int \ldots \int_{E^n} M(t, 3(x_1 + z_1), 3(x_2 + z_2), \ldots, 3(x_n + z_n)) J_h(z_1) J_h(z_2) \ldots J_h(z_n) dz_1 dz_2 \ldots dz_n \leq$$

$$\int \ldots \int_{E^n} M_h(t, x_1, x_2, \ldots, x_n)$$

there is a constant $K_3 \geq 2, \delta_i(t) \geq 0$ for $1 \leq i \leq n$ such that for almost all t in T for all x_i, z_i for $1 \leq i \leq n$ such that $|x_i + z_i| \geq \delta_i(t)$ for $1 \leq i \leq n$ where $|z_i| \leq h_i$ for $1 \leq i \leq n$.

By combining the above two inequalities, we achieve

$$M_h(t, 2x_1, 2x_2, \ldots, 2x_n) \leq KK_3 M_h(t, x_1, x_2, \ldots, x_n)$$
for all $|x_i| > \max(d_{2i}, \delta_i(t) + h) = \delta_i'(t)$ Since $\overline{M}(t, 2\delta_1(t), 2\delta_2(t), \ldots, 2\delta_n(t))$ is integrable over T, this yields the integrability of $\overline{M}_h(t, 2\delta_1'(t), 2\delta_2'(t), \ldots, 2\delta_n'(t))$ which proves the theorem. ■

For each t in T and x_1, x_2, \ldots, x_n in E^n it is known that

$$
\lim_{h \to 0} M_h(t, x_1, x_2, \ldots, x_n) = M(t, x_1, x_2, \ldots, x_n).
$$

However, the same property does not hold in general for $\hat{M}_h(t, x_1, x_2, \ldots, x_n)$. This is the point of the next theorem.

Theorem 2.3:

For each $h > 0$ let x_i^h for $1 \leq i \leq n$ be the minimizing point of $M_h(t, x_1, x_2, \ldots, x_n)$ defining $\hat{M}_h(t, x_1, x_2, \ldots, x_n)$. Then for each t in T and each x_i for $1 \leq i \leq n$ in E^n, there exists $K(t, x_1, x_2, \ldots, x_n)$ such that

$$
\lim_{h \to 0} \hat{M}_h(t, x_1, x_2, \ldots, x_n) = M(t, x_1, x_2, \ldots, x_n) + K(t, x_1, x_2, \ldots, x_n) \prod_{i=1}^{n} \lim_{h \to 0} x_i^h
$$

Proof:

By the definition of $\hat{M}_h(t, x_1, x_2, \ldots, x_n)$ we can write

$$
\left| \hat{M}_h(t, x_1, x_2, \ldots, x_n) - M(t, x_1, x_2, \ldots, x_n) \right| \leq \int_{E^n} \cdots \int_{E^n} M(t, x_1 + x_0^h + z_1, x_2 + x_0^h + z_2, \ldots, x_n + x_0^h + z_n) - M(t, x_1, x_2, \ldots, x_n) \left| J_h(z_1)J_h(z_2)\ldots J_h(z_n)dz_1dz_2\ldots dz_n \right|
$$

(1)
However, we know that
\[
M(t, x_1 + x_0^h + z_1, x_2 + x_0^h + z_2, ..., x_n + x_0^h + z_n) - M(t, x_1^h, x_2^h, ..., x_n^h) \leq M(t, x_1 + x_0^h + z_1, x_2 + x_0^h + z_2, ..., x_n + x_0^h + z_n - M(t, x_1^h, x_2^h, ..., x_n^h) \leq M(t, x_1 + x_0^h + z_1, x_2 + x_0^h + z_2, ..., x_n + x_0^h + z_n) - M(t, z_1^h, z_2^h, ..., z_n^h).
\]

Moreover, since \(M(t, x_1, x_2, ..., x_n) \) is a convex function, it satisfies a Lipschitz condition on compact subsets of \(E^n \) (see[Skaff (1968), Th.5.1]). Therefore, there exists \(K_1(t, x_1, x_2, ..., x_n) \) and \(K_2(t, x_1, x_2, ..., x_n) \) such that
\[
M(t, x_1 + x_0^h + z_1, x_2 + x_0^h + z_2, ..., x_n + x_0^h + z_n) - M(t, x_1^h, x_2^h, ..., x_n^h) \leq K_1(t, x_1, x_2, ..., x_n) \| x_0^h \| \| z_1 \| \| x_0^h \| \| z_2 \| \| x_0^h \| \| z_n \|.
\]

and
\[
M(t, x_0^h + z_1, x_0^h + z_2, ..., x_0^h + z_n) - M(t, z_1^h, z_2^h, ..., z_n^h) \leq K_2(t, x_1, x_2, ..., x_n) \| x_0^h \| \| x_0^h \| \| x_0^h \|.
\]

If we combine (3) and (4) with (2) and if we substitute the resulting expression into (1), we achieve the inequality
\[
\begin{align*}
\left| \bar{M}_h(t, x_1, x_2, ..., x_n) - M(t, x_1, x_2, ..., x_n) \right| & \leq \sum_{i=1}^{n} \left| x_0^h \left| K_i(t, x_1, x_2, ..., x_n) \right| \right| J_h(z_i) J_h(z_i) ... J_h(z_i) dz_1 dz_2 ... dz_n \\
& + \sum_{i=1}^{n} \left| K_i(t, x_1, x_2, ..., x_n) \right| J_h(z_i) J_h(z_i) ... J_h(z_i) dz_1 dz_2 ... dz_n \\
& + \sum_{i=1}^{n} \left| M(t, z_1, z_2, ..., z_n) J_h(z_i) J_h(z_i) ... J_h(z_i) dz_1 dz_2 ... dz_n \\
& + \sum_{i=1}^{n} \left| M(t, z_1, z_2, ..., z_n) J_h(z_i) J_h(z_i) ... J_h(z_i) dz_1 dz_2 ... dz_n \\
& + \sum_{i=1}^{n} \left| M(t, z_1, z_2, ..., z_n) J_h(z_i) J_h(z_i) ... J_h(z_i) dz_1 dz_2 ... dz_n \right|.
\end{align*}
\]
Generalized mean function for n-variable

Since the last four integrals on the right side tend to zero as h tends to zero, we prove the theorem by setting

$$K(t,x_1,x_2,\ldots,x_n) = K_1(t,x_1,x_2,\ldots,x_n) + K_2(t,x_1,x_2,\ldots,x_n)$$

Corollary 2.4:

Suppose $M(t,x_1,x_2,\ldots,x_n)$ is a GN'-function such that

$$M(t,x_1,x_2,\ldots,x_n) = M(t,-x_1,-x_2,\ldots,-x_n).$$

Then for each t in T and x_i in E^n for $i=1$ to n, we have

$$\lim_{h \to 0} M_h(t,x_1,x_2,\ldots,x_n) = \hat{M}(t,x_1,x_2,\ldots,x_n)$$

Proof:

This result is clear since $\lim_{h \to 0} |x_i^h| = 0$ for $i=1$ to n if $M((t,x_1,x_2,\ldots,x_n)) = M(t,-x_1,-x_2,\ldots,-x_n)$. In fact, if $M(t,x_1,x_2,\ldots,x_n)$ is even in (x_1,x_2,\ldots,x_n) then the $x_i^h = 0$ for $i=1$ to n for all h.

For each t in T let A_h denote the set of minimizing points of

$$M_h(t,x_1,x_2,\ldots,x_n)$$

and let B represents the null space of $M(t,x_1,x_2,\ldots,x_n)$ relative to points in $E^n \times E^n \times \ldots \times E^n$, i.e.,

$$B = \{(x_1,x_2,\ldots,x_n) \in E^n \times E^n \times \ldots \times E^n : M(t,x_1,x_2,\ldots,x_n) = 0\}.$$

If $M(t,x_1,x_2,\ldots,x_n)$ is a GN'-function, then $B = \{(0,0,\ldots,0)\}$. For the sake of argument, let us suppose that $M(t,x_1,x_2,\ldots,x_n)$ has all the properties of a GN'-function except that $M(t,x_1,x_2,\ldots,x_n) = 0$ need not imply $x_i = 0$ for $i=1$ to n.

28
We will show the relationships that exist between A_h and B. This is the content of the next few theorems.

Theorem 2.5:

The sets B and A_h are closed convex sets.

Proof:

This result follows from the convexity and continuity of $M(t,x_1,x_2,...,x_n)$ in x_i for $i=1$ to n for each t in T. ■

Theorem 2.6:

Let $B_e = \{(x_1,x_2,...,x_n) : M(t,x_1,x_2,...,x_n) < e\}$ for each t in T. Then given any $e > 0$, there is a constant $h_0 > 0$ such that $A_h \subseteq B_e$ for each $h \leq h_0$.

Proof:

Since $B \subseteq B_e$, we can choose h_0 sufficiently small so that if $(x_1,x_2,...,x_n)$ is in B then $(x_1 + z_1,x_2 + z_2,...,x_n + z_n)$ is in B_e for all $(z_1,z_2,...,z_n)$ such that $|z_i| \leq h_0$ for $i=1$ to n. Let $(z_{01},z_{02},...,z_{0n})$ be arbitrary but fixed points in A_h, $h \leq h_0$. Then

$$M_h(t,z_{01},z_{02},...,z_{0n}) \leq M_h(t,x_1,x_2,...,x_n) \text{ for all } x_i \text{ for } i=1 \text{ to } n.$$

Therefore, if $(x_1,x_2,...,x_n)$ in B, we have $M_h(t,z_{01},z_{02},...,z_{0n}) < e$ by our choice of h_0. Letting h tend to zero yields $M(t,z_{01},z_{02},...,z_{0n}) < e$, i.e., $(z_{01},z_{02},...,z_{0n})$ in B_e.

We have commented above that $A_h = \{(0,0,...,0)\}$
Generalized mean function for n-variable

\[M(t,x_1,x_2,...,x_n) = M(t,-x_1,-x_2,...,-x_n). \]

It is also true if \(M(t,x_1,x_2,...,x_n) \) is strictly convex in \(x \) for each \(t \) in \(T \).

Theorem 2.7:

Suppose \(M(t,x_1,x_2,...,x_n) \) is a GN*-function which is strictly convex in \(x_i \) for each \(t \). Then \(h, A_h = \{(0,0,...,0)\} \) for each \(h \).

Proof:

Suppose that there exists \(z_{0i} \neq x_{0i} \) for \(1 \leq i \leq n \) such that \(z_{0i}, x_{0i} \) for \(1 \leq i \leq n \) are in \(A_h \). Let \(z_i = \frac{(x_{0i} + z_{0i})}{2} \) for \(1 \leq i \leq n \). Then, since \(M(t,x_1,x_2,...,x_n) \) is strictly convex, \(M_h(t,x_1,x_2,...,x_n) \) is strictly convex in \(x_1,x_2,...,x_n \), therefore, we have

\[
M_h(t,z_1,z_2,...,z_n) = \frac{1}{2} M_h(t,x_1,x_2,...,x_n) + \frac{1}{2} M_h(t,z_1,z_2,...,z_n). \tag{1}
\]

However, \((x_{01}, x_{02},...,x_{0n}), (z_{01}, z_{02},...,z_{0n}) \) are in \(A_h \) reduces (1) to the inequality \(M_h(t,z_1,z_2,...,z_n) < M_h(t,x_1,x_2,...,x_n) \) for all \(x_i \) for \(i = 1 \) to \(n \).

This means \(z_1, z_2, ... \) and \(z_n \) are in \(A_h \) and are \((x_{01}, x_{02},...,x_{0n}), (z_{01}, z_{02},...,z_{0n}) \) not in \(A_h \) which is a contradiction. Hence, \(x_{0i} = z_{0i} \) for \(i = 1 \) to \(n \). Since \(M(t,x_1,x_2,...,x_n) \) is a GN'-function, \(B = \{(0,0,...,0)\} \). In this case \(x_{0i} = z_{0i} = 0 \) for \(i = 1 \) to \(n \).

References

2. Hassen, H., A., "Generalized growth Condition for n-variable". Journal of College of Education.1,2,9,2010
3. Hassen, H. A.: "Vector Valued Orlicz Space Generalize GN*-function"
 Msc. thesis. Kufa University. Department of Mathematic. College of
 Education, 48, 2007
4. Borwein, Jon and Vanderwerff, Jon, "Convex function on Banach space Not
7. Orlicz, W., "Vber eine gewisse klasic von Räumen vom
 Typus". BBull. Int. Acad Polon. Sci. 207-220, 1932