Trapped Fourth Ventricle: Case Study and Review of the Literature

Ali Hikmat Azeez

ABSTRACT:

BACKGROUND:
A trapped fourth ventricle is diagnosed when the fourth ventricle is no longer communicates with the third ventricle and the basal cisterns. The resultant obstruction leads to persistent and progressive dilatation of the fourth ventricle.

CASE REPORT:
This 20-year-old male known to have right sided ventriculo-peritoneal shunt placed three years back after the diagnosis of obstructive hydrocephalus. On January, 2013 the patient was presented with headache, vomiting and blurred vision. CT scans of the brain showed well-decompressed lateral ventricles with a large and dilatation of the fourth ventricle. The diagnosis of trapped fourth ventricle was done and a shunt system was placed directly in the fourth ventricle. Postoperative period was uneventful and the patient was discharged well.

DISCUSSION:
The concept of trapped fourth ventricle is a well described entity. Different causes have been postulated and different therapeutic approaches were attempted to solve this problem.

CONCLUSION:
Direct ventriculo-peritoneal shunt in trapped fourth ventricle can efficiently resolve this condition.

KEY WORDS: trapped 4th ventricle, hydrocephalus, ventriculoperitoneal shunt.

INTRODUCTION:
A dilated fourth ventricle due to outlet obstruction is a clinical-radiologic entity with symptoms similar to those of a posterior fossa space–occupying lesion. Indeed, blockage of the foramina of Luschka and Magendie and of the aqueduct results in a “trapped” fourth ventricle. Continued cerebrospinal fluid (CSF) production within the fourth ventricle leads to cystic dilatation of the fourth ventricle.

Specialist Neurosurgeon, Neurosurgical Unit, Ibn Sena Teaching Hospital, Mosul, Iraq.
TRAPPED FOURTH VENTRICLE

may be responsible for this condition. Patients may have the typical symptoms and signs of hydrocephalus or more atypical symptoms such as lower cranial nerve dysfunction. Occasionally, an entrapped fourth ventricle is an incidental finding on imaging. Occasionally, compartmentalization of the ventricular system can be noted after CSF shunting. For instance, after shunt placement in the lateral ventricles there may be persistent and progressive dilatation of the fourth ventricle with associated brain stem and cerebellar dysfunction. However, many cases are asymptomatic and are discovered as incidental findings on CT scan.

Patients with entrapped fourth ventricle with Ataxia, lethargy, diplopia, nystagmus, mental confusion, dysarthria, and multiple cranial nerve palsies. However, Many cases are asymptomatic and are discovered as incidental findings on CT scan.

CT and MRI diagnosis of isolated fourth ventricle is usually accurate. The most striking finding is the presence of a very large fourth ventricle, accompanied by very small or "slit-like" lateral and third ventricles. The fourth ventricle appears rounded or ballooned, the brain stem is displaced ventrally, and posterior fossa subarachnoid spaces and cisterna magna are reduced in size or obliterated. Treatment options for isolated fourth ventricle include: fourth ventricle-peritoneal shunting, direct microsurgical approach, vein excision (usually an arachnoid veil) and open aqueduct canalization or outlet fenestration of the fourth ventricle. Endoscopic approaches include aqueductoplasty, aqueductal stenting, and cystoventricular fenestration. Regarding revision of the existing shunt, the literature does not reveal any successful management strategy that utilizes manipulation of valve pressure to effect relief of a functional obstruction.

Some authors favored a direct microsurgical opening of the outlet of the fourth ventricle, without insertion of a fixed foreign body, as the preferred primary surgical option for entrapment of the fourth ventricle, concluding that foramen magnum decompression is an effective treatment alternative. However, most authors consider shunting of the fourth ventricle as the less invasive and more effective approach. Placement of the new fourth ventricular catheter could be through midline or lateral and may then be connected to a preexisting lateral ventriculoperitoneal shunt catheter tubing if feasible. To improve the safety and effectiveness of shunting, some authors recommended cannulating the posterior fossa cyst under direct stereotactic technique or ultrasound or endoscopic guidance to avoid possible direct trauma to the brain stem and to ensure exact placement. Although not done in our patient due to lack of availability of Y connector, it is important to connect the fourth ventricular catheter with a Y connector to the pre-existing ventriculoperitoneal shunt. The use of Y connector helps prevent the creation of a pressure gradient between the infra and supratentorial compartment, with possible onset of terrible, disabling headaches triggered by the move from reclining to upright standing. It is interesting to note that the placement of a new shunt system in the fourth ventricle in our case significantly alleviated the symptoms of raised intracranial pressure without the development of any complications related to the fourth ventricular shunting. Post-operative course was uneventful and complications were not noticed in the 6 months follow-up period.
CONCLUSION:
That direct placement of a new shunt in the trapped fourth ventricle is simple, safe and effective in controlling the symptoms and signs of trapped fourth ventricle cases.

REFERENCES:
TRAPPED FOURTH VENTRICLE

