Design of On-Line Nonlinear Kinematic Trajectory Tracking Controller for Mobile Robot based on Optimal Back-Stepping Technique

Abstract

Abstract –This paper presents an on-line nonlinear trajectory tracking control algorithm for differential wheeled mobile robot using optimal back-stepping technique based particle swarm optimization while following a pre-defined continuous path. The aim of the proposed feedback nonlinear kinematic controller is to find the optimal velocity control action for the real mobile robot. The particle swarm optimization algorithm is used to find the on-line optimal parameters for the proposed controller based on the Lyapunov criterion in order to check the stability of the control system. Simulation results (Matlab) and experimental work (LabVIEW) show the effectiveness and robustness of the proposed on-line nonlinear kinematic control algorithm. This is demonstrated by minimizing tracking error and obtaining smoothness of the optimal velocity control signal, especially with regards to the external disturbance attenuation problem..Keywords:- Mobile Robots, Nonlinear Kinematic Controller, Back-Stepping Technique, Particle Swarm Optimization, Trajectory Tracking, Matlab package, LabVIEW package.