Systematic Analysis and Design of Single-Phase Boost PFC Converter for Induction Motor Drive
Abstract
This paper presents a systematic analysis and design of a single-phase boost power factor correction (PFC) converter supplying an inverter-motor drive system. The PFC converter is a single-stage single-switch boost converter that uses a current shaping technique to reshape the non-sinusoidal input current drawn by the motor-drive system to a near sinusoidal waveform. The resultant is a current input with almost free-harmonics, which comply with the IEC 61000-3-2 limits, and a system operates with near unity power factor. The other function of the boost converter is to provide a regulated DC voltage to the inverter-motor system. The motor drive system incorporates a1-hp induction motor fed by a Pulse Width Modulation (PWM) inverter with open-loop voltage to frequency (v/f) control. This drive system is analyzed as a load across the converter and its equivalent resistance is extracted and used in the PFC controller design. The theoretical and experimental results are compared to validate the analysis.
Keywords
Index Terms—Boost converter, power factor correction, induction motor, equivalent resistance.Metrics