Table of content

Journal of Engineering

مجلة الهندسة

ISSN: 17264073 25203339
Publisher: Baghdad University
Faculty: Engineering
Language: Arabic and English

This journal is Open Access

About

The Journal Engineering was issued in 1986. It was Stopped from 1990 – 1997 because of the economic blockade. It restarted publication after the fourth scientific engineering conference for it published the papers that were accepted in the conference.
It is a scientific engineering journal refereed by specialized and qualified professors in most of the engineering fields and those Specialists in the issued by the college of Engineering university of Baghdad .It was serenely publibued , but from 2011 it has issued of monthly for the numerous papers submitted to the journal to publish their papers in this scientific journal in addition to some of the Arabs professors because the journal is considered one of the valued journals in the Arabic homelan .
Many professions were the head editor of the journal from its first issue. The first one was prof.dr. Laith Ismail Namiq then prof.dr. Mohammed A.Alawis ,prof.dr.Ali A Al – kilidar prof.dr. Abdul-Ilah Younis and currently Prof.dr.Qais S. Ismail.

AIMS AND SCOPE

The Journal of Engineering is an open access, monthly, refereed, peer-reviewed journal. It focuses on the different disciplines of engineering.

Its scope is to cover almost all the aspects of engineering and technology and their related topics. The Journal of Engineering tries to emphasize on publishing high-quality papers with an acceptable, professional and considerable background.

The submitted papers undergo plagiarism, a double-blind peer review by professionals in the paper specific specialty. This process is accomplished according to the Journal criteria of evaluation, where the manuscript, contents, and organization of the paper are to be checked. The papers will be available online for the readers.

Loading...
Contact info

Jadriyah, Baghdad
Iraq
Mobile:+964 7714076860
Email: info@jcoeng.edu.iq
https://www.jcoeng.edu.iq

Table of content: 2018 volume:24 issue:5

Article
The Improvement of Thermal Insulating Concrete Panel
تحسين العزل الحراري للبلاطه الخرسانية

Loading...
Loading...
Abstract

The Iraqi houses flattening the roof by a concrete panel, and because of the panels on the top directly exposed to the solar radiation become unbearably hot and cold during the summer and winter. The traditional concrete panel components are cement, sand, and aggregate, which have a poor thermal property. The usage of materials with low thermal conductivity with no negative reflects on its mechanical properties gives good improvements to the thermal properties of the concrete panel. The practical part of this work was built on a multi-stage mixing plan. In the first stage the mixing ratio based on the ratios of the sand to cement. The second stage mixing ratios based on replacing the coarse aggregate quantities with the Alabaster aggregates, and the third stage the mixing ratios based on the replacement of wood ash instead of the sand. While the fourth stage mixing ratios based on decreasing the thermal conductivity and increasing mechanical properties by adding a multilayer of a plastic net. The result shows that using a concrete panel with components (cement, sand, coarse aggregate, wood ash, and Alabaster aggregates) with a mass ratio of (1:1:2:1:1) and 3-plastic layers, gives the best improvement of the thermal properties. Where, the thermal conductivity is reduced by 42% and the specific heat increased by 41.2% as compared to the traditional concrete panel mixing ratio, with mechanical properties are agreed with the Iraqi standards.


Article
Stress Concentration factor Analysis of Helical Gear Drives with Asymmetric Teeth Profiles
تحليل عامل تمركز الاجهادات للتروس الحلزونية ذات الاسنان الغير متماثلة الجوانب

Loading...
Loading...
Abstract

This study investigates the influence of asymmetric involute teeth profiles for helical gears on the bending stress. Theoretically, bending stress has been estimated in spur involute gears which have symmetric teeth profile by based on the Lewis, 1892 equation. Later, this equation is developed by, Abdullah, 2012. to determine the effect of an asymmetric tooth profile for the spur gear on the bending stress. And then these equations are applied with stress concentration factor once for symmetric and once other for asymmetric teeth profile. In this paper, the bending stresses for various types of helical gear with various types of asymmetric teeth profile are calculated numerically for defined the stress concentration factor. The numerical solution based on the finite element method technique which that done by using the software simulation SolidWorks 2016. The results of this study indicate that the helical gear drive with asymmetric teeth profile having 'loaded side pressure angle' of (〖14.5〗^°) and 'unloaded side pressure angle' of (〖35〗^°) is better than a helical gear with standard teeth profile having pressure angle of (〖14.5〗^°) from the regarding of tooth bending strength. Also, notes that the great enhancement in the results of maximum tooth bending stress for modified involute of tooth profile compared with the standard teeth profile. In addition to, predict the equation of stress concentration factor which is a function of both unloaded side pressure angle and helix angle and then it used with Abdullah equation for to determine the nominal stresses in the root fillet.


Article
Power System Stabilizer PSS4B Model for Iraqi National Grid using PSS/E Software
نظام مثبت القدرة متعدد المستويات PSS4B المطبق على الشبكة الوطنية العراقية باستخدام برنامج القدرة للمحاكاة PSS/E

Loading...
Loading...
Abstract

To damp the low-frequency oscillations which occurred due to the disturbances in the electrical power system, the generators are equipped with Power System Stabilizer (PSS) that provide supplementary feedback stabilizing signals. The low-frequency oscillations in power system are classified as local mode oscillations, intra-area mode oscillation, and interarea mode oscillations. Double input multiband Power system stabilizers (PSSs) were used to damp out low-frequency oscillations in power system. Among dual-input PSSs, PSS4B offers superior transient performance. Power system simulator for engineering (PSS/E) software was adopted to test and evaluate the dynamic performance of PSS4B model on Iraqi national grid. The results showed that after installing the PSS in a specific plant the oscillation of rotor angle, bus frequency, speed, power flow is better than without PSS during the disturbances that occurred during the simulations. All the PSS/E simulation and tests were done in the National dispatch center (NDC) laboratory, Ministry of Electricity.


Article
Design of an Optimal Integral Backstepping Controller for a Quadcopter
تصميم وحدة تحكم مثلى نوع الخطو الخلفي التكاملي لمروحية رباعية

Loading...
Loading...
Abstract

In this paper, an Integral Backstepping Controller (IBC) is designed and optimized for full control, of rotational and translational dynamics, of an unmanned Quadcopter (QC). Before designing the controller, a mathematical model for the QC is developed in a form appropriate for the IBC design. Due to the underactuated property of the QC, it is possible to control the QC Cartesian positions (X, Y, and Z) and the yaw angle through ordering the desired values for them. As for the pitch and roll angles, they are generated by the position controllers. Backstepping Controller (BC) is a practical nonlinear control scheme based on Lyapunov design approach, which can, therefore, guarantee the convergence of the position tracking error to zero. To improve controller capability in the steady state against disturbances, an integral action is used with the BC. To determine the optimal values of the IBC parameters, the Particle Swarm Optimization (PSO) is used. In the algorithm, the controller parameters are computed by minimizing a cost function that depends on the Integral Time Absolute Error (ITAE) performance index. Finally, different numerical simulations are provided in order to illustrate the performances of the designed controller. And for comparison purposes, a PID controller is designed and optimized using the PSO to control the quadcopter. The obtainediresults indicated a superiority in performance for the IBC over the PID controller based on some points among which are: a 13.3% and 30.5% lesser settling times for X and Y consequently, the ability to perform critical maneuvers that the quadcopter failed to do using the PID controller, and the capability of fast following up and conforming the changes of pitch (


Article
Performance enhancement of Echo Cancellation Using a Combination of Partial Update ( PU) Methods and New Variable Length LMS (NVLLMS) Algorithm
تحسين أداء منظومة الغاء الصدى باستخدام مجموعة من الخوارزميات المدمجة بين خوارزميات التعديل الجزئي مع خوارزمية اقل معدل للتربيع متغيرة الطول

Loading...
Loading...
Abstract

In this paper, several combination algorithms between Partial Update LMS (PU LMS) methods and previously proposed algorithm (New Variable Length LMS (NVLLMS)) have been developed. Then, the new sets of proposed algorithms were applied to an Acoustic Echo Cancellation system (AEC) in order to decrease the filter coefficients, decrease the convergence time, and enhance its performance in terms of Mean Square Error (MSE) and Echo Return Loss Enhancement (ERLE). These proposed algorithms will use the Echo Return Loss Enhancement (ERLE) to control the operation of filter's coefficient length variation. In addition, the time-varying step size is used.The total number of coefficients required was reduced by about 18% , 10% , 6%, and 16% using Periodic, Sequential, Stochastic, and M-max PU NVLLMS algorithms respectively, compared to that used by a full update method which is very important, especially in the application of mobile communication since the power consumption must be considered. In addition, the average ERLE and average Mean Square Error (MSE) for M-max PU NVLLMS are better than other proposed algorithms.


Article
Prediction of the Effect of Using Stone Column in Clayey Soil on the Behavior of Circular Footing by ANN Model
التنبؤ بتأثير استخدام الاعمدة الحجرية في الترب الطينية على سلوك الاساس الدائري باستخدام نموذج العقد العصبيه الصناعية

Loading...
Loading...
Abstract

Shallow foundations are usually used for structures with light to moderate loads where the soil underneath can carry them. In some cases, soil strength and/or other properties are not adequate and require improvement using one of the ground improvement techniques. Stone column is one of the common improvement techniques in which a column of stone is installed vertically in clayey soils. Stone columns are usually used to increase soil strength and to accelerate soil consolidation by acting as vertical drains. Many researches have been done to estimate the behavior of the improved soil. However, none of them considered the effect of stone column geometry on the behavior of the circular footing. In this research, finite element models have been conducted to evaluate the behavior of a circular footing with different stone column configurations. Moreover, an Artificial Neural Network (ANN) model has been generated for predicting these effects. The results showed a reduction in the bending moment, the settlement, and the vertical stresses with the increment of the stone column length, while both the horizontal stress and the shear force were increased. ANN model showed a good relationship between the predicted and the calculated results.


Article
Wind Interference Effect for Overall Design Load on Mid-Rise Building
تأثير تداخل الرياح على تصميم الحمل التصميمي لبناية متوسطة الارتفاع

Loading...
Loading...
Abstract

The constructed building in the urban area is subject to wind characteristics due to the influence of surrounding buildings. The residential complexes currently being built in Iraq represent a case study for the subject of this research. Therefore, the objective of this study is to identify the interference effect because of adjacent buildings effects on the mid-rise building. The speed and pressure of the wind have been numerically simulated as well as wind load has been simulated by using a virtual wind tunnel which is available in Autodesk Robot Structural Analysis, RSA, software. Two identical adjacent buildings have been simulated and many coefficients were included in this study such as the spacing, directionality, and elevation of adjacent building coefficients. The results of the study showed that the neighboring building could increase or decrease the wind pressure significantly so that it cannot be neglected.


Article
Prediction of Municipal Solid Waste Generation Models Using Artificial Neural Network in Baghdad city, Iraq
التنبؤ بنماذج توليد النفايات الصلبة البلدية باستخدام الشبكة العصبية الاصطناعية في مدينة بغداد، العراق

Loading...
Loading...
Abstract

The importance of Baghdad city as the capital of Iraq and the center of the attention of delegations because of its long history is essential to preserve its environment. This is achieved through the integrated management of municipal solid waste since this is only possible by knowing the quantities produced by the population on a daily basis. This study focused to predicate the amount of municipal solid waste generated in Karkh and Rusafa separately, in addition to the quantity produced in Baghdad, using IBM SPSS 23 software. Results that showed the average generation rates of domestic solid waste in Rusafa side was higher than that of Al-Karkh side because Rusafa side has higher population density than Al-Karkh side. The artificial neural networks show a high coefficient of determination between the predicted and observed domestic solid waste, with R2 value reaching to 0.91, 0.828 and 0.827 for Al-Karkh, 0.9986,0. 9903 and 0.9903 for Rusafa side, and 0.9989, 0.9878 and 0.9847 in Baghdad city, and also, these models were used to estimate the generation of municipal solid waste for short period with highly efficient which assistance in planning to design landfills sites.


Article
Evaluation of Job-Mix Formula Tolerances as Related to Asphalt Mixtures Properties
تقييم التغاير لمعادلة المزج بالنسبة لخواص الخلطات الاسفلتية

Loading...
Loading...
Abstract

The current Iraqi standard specifications for roads and bridges allowed the prepared Job-Mix Formula for asphalt mixtures to witness some tolerances with regard to the following: coarse aggregate gradation by ± 6.0 %, fine aggregate gradation by ± 4.0 %, filler gradation by ± 2.0 %, asphalt cement content by ± 0.3 % and mixing temperature by ± 15 oC. The objective of this work is to evaluate the behavior of asphalt mixtures prepared by different aggregates gradations (12.5 mm nominal maximum size) that fabricated by several asphalt contents (40-50 grade) and various mixing temperature. All the tolerances specified in the specifications are taken into account, furthermore, the zones beyond these tolerances are also observed. The evaluation process is illustrated by volumetric properties such as density, air voids, voids in mineral aggregate and voids filled with asphalt. Marshall test is carried out to find stability and flow values. The resistance to moisture effect is investigated by conducting the compressive test for dry and water immersed conditions to find the index of retained strength. The experimental results supported the recommendations to increase tolerances of coarse and fine aggregate gradations to ± 7.0 % and ± 5.0 % respectively. The optimum asphalt content tolerance can be increased to ± 0.5 %. The tolerances of filler gradation and mixing temperature are preferable to keep their current values.


Article
Performance Evaluation of Plant Produced Warm Mix Asphalt
تقييم الأداء للخرسانة الإسفلتية الدافئة المنتجة في المعمل

Loading...
Loading...
Abstract

Warm mix asphalt (WMA) is relatively a new technology which enables the production and compaction of asphalt concrete mixtures at temperatures 15-40 °C lower than that of traditional hot mix asphalt HMA. In the present work, six asphalt concrete mixtures were produced in the mix plant (1 ton each) in six different batches. Half of these mixes were WMA and the other half were HMA. Three types of fillers (limestone dust, Portland cement and hydrated lime) were used for each type of mix. Samples were then taken from these patches and transferred to lab for performance testing which includes: Marshall characteristics, moisture susceptibility (indirect tension test), resilient modulus, permanent deformation (axial repeated load test) and fatigue characteristics (third point flexural beam test). The obtained results indicated that the performance of WMA is enhanced when using the hydrated lime as filler in comparison with the limestone dust and Portland cement fillers. Better fatigue life was obtained for WMA using hydrated lime filler in comparison with HMA. Regardless the filler type, the Marshall properties of WMA satisfy the requirement of local specification, other properties of WMA were relatively lower than the HMA.

Table of content: volume: issue: