research centers


Search results: Found 1

Listing 1 - 1 of 1
Sort by

Article
Automatic Brain MRI Slices Classification Using Hybrid Technique
التصنيف التلقائي للدماغ لصور الرنين المغناطيسي باستخدام تقنية هجينة

Authors: Dr. AhlamFadhil Mahmood د.أحلام فاضل محمود --- Ameen Mohammed Abd-Alsalam أمين محمد عبد السلام
Journal: AL Rafdain Engineering Journal مجلة هندسة الرافدين ISSN: 18130526 Year: 2014 Volume: 22 Issue: 3 Pages: 198-212
Publisher: Mosul University جامعة الموصل

Loading...
Loading...
Abstract

AbstractThis paper presents an intelligent classification technique to identify normal and abnormal slices of the magnetic resonance human brain images(MRI). The prtoposed hybrid technique consists of four subsequent stages; namely, dimensionality reduction, preprocessing, feature extraction, and classification. In the initial stages, the enhancement and removed unwanted informationare applied to provide a more appropriate image for the subsequent automated stages. In feature extraction stage, the most efficient features like statistical, and Haar wavelet features are extracted from each slice of brain MR images. In the classification stage, initially performs classification process by utilizing Fuzzy Inference System (FIS) and secondly Feed Forward Neural Network (FFNN) is used to classify the braintissue to normal or abnormal.The proposed automated system is tested on a data set of 572 MRI images using T1 horizontal transverse (axial) section of the brain. Hybrid method yields high sensitivity of 100%, specificity of 100% and overallaccuracy of 95.66% over FIS and FFNN. The classification result shows that the proposed hybrid techniques are robust and effective compared with other recently work.Keywords: Brain Tumor Classification; Fuzzy Inference System; Feed Forward Neural Network; MRI .

الملخصتستعرض هذه الورقة تقنية ذكية لتصنيف شرائح صور الدماغ بالرنين المغناطيسي إلى طبيعية أو مرضية. التقنية الهجينة المقترحة تشمل أربعة مراحل : تقليل أبعاد صور الرنين , تجهيزها، واستخراج الميزات ، والتصنيف. في المراحل الأولى، يتم استخدام تقنيات لإزالة المعلومات الغير مفيدة لتوفير صورة أكثر ملائمة لمراحل لاحقة. في مرحلة استخراج الميزات، يتم استخراج الميزات الأكثر كفاءة وهيإحصائية، وميزات المويجات لكل شريحة من صور الرنين المغناطيسي. في مرحلة التصنيف، يتم أولا استخدام نظام الاستدلال الضبابيثم الشبكة العصبية الاصطناعية لتصنيف إلى حالات طبيعية وأخرى مرضية. تم اختبار النظام الأوتوماتيكي المقترح باستخدام البيانات ل572 صورة رنين مغناطيسي لمقطع أفقي محوري لصور الدماغ. الطريقة الهجينة أعطت حساسية عالية مقدارها 100% وكذلك لعامل الخصوصية وبدقة مقدارها 95.66% بدمج المنطق المضبب والشبكة العصبية. نتائج التصنيف أثبتت كفاءة الطريقة المقترحة مقارنة مع أعمال حديثة

Listing 1 - 1 of 1
Sort by
Narrow your search

Resource type

article (1)


Language

English (1)


Year
From To Submit

2014 (1)