research centers


Search results: Found 3

Listing 1 - 3 of 3
Sort by

Article
Manufacturing of Bi-functional Nano-sensor of Nobel Metal for Hydrocarbon Gas Detection in Petroleum Sector Using Pulse Laser Deposition Technique

Authors: K.A. Sukkar --- S.M. Kadhim --- A.S. Falih
Journal: Engineering and Technology Journal مجلة الهندسة والتكنولوجيا ISSN: 16816900 24120758 Year: 2017 Volume: 35 Issue: 8 Part (A) Engineering Pages: 864-871
Publisher: University of Technology الجامعة التكنولوجية

Loading...
Loading...
Abstract

In the present investigation bi-functional nano-gas-sensor was manufactured from two types of metals: ZnO metal oxide and Pt noble metal. The nano-gas-sensors were designed for monitoring and control the environmental pollution in petroleum sector. The preparation technique was carried out by design and construction of a pulse laser deposition unit (PLD) with Nd: YAG laser (λ=532nm, laser fluence 2 J/cm2, repetition rate 6 Hz and the pulse duration 7ns). The target was pure ZnO and Pt:ZnO that containing 4%wt Pt. The hexachloroplatinic acid (H2PtCl6) was used as Pt source. The PLD films were deposited at three different temperatures 200, 250, and 300oC. Many characterization tests are used to study the influence of temperature on surface morphology of prepared films: Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM), x-ray Diffraction (XRD) and (UV) visible. The results pointed to a direct relationship between the deposition temperature and the grain sizes of the nanoparticles formed on the substrate. On the other hand, the results of RMS roughness of AFM showed an increased value with increasing of deposition temperature. The best value of RMS roughness was 10.3nm for thin films deposited at 250ºC. The x-ray results shows formation of nanostructure on the substrate at deposition temperature of 250ºC, in which represent high surface area of gas sensor and especially with Pt. In addition, the UV-VIS transmittance measurements have shown that the films are highly transparent in the Visb-NIR wavelength region, with an average transmittance of about 90%. These results pointed to that the manufactured bi-metals nano-gas-sensor (Pt:ZnO) at 250oC is more suitable for LPG hydrocarbons detection application in petroleum positions.


Article
Improve the Process of Enhancing Oil Recovery (EOR) by Applying Nanomagnetic Cobalt Ferrite Nanoparticles

Authors: A.D. Thamir --- K.A. Sukkar --- Ali A. Ati
Journal: Engineering and Technology Journal مجلة الهندسة والتكنولوجيا ISSN: 16816900 24120758 Year: 2017 Volume: 35 Issue: 9 Part (A) Engineering Pages: 872-877
Publisher: University of Technology الجامعة التكنولوجية

Loading...
Loading...
Abstract

In this paper we reported nano-crystalline cobalt ferrite powders were synthesized using co-precipitation method at 600 °C, 700 °C and 800 °C. The structural, morphological and magnetic properties of the powders were investigated by x-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). Infrared spectral analysis data between 200 and 1000 cm-1 defined the intrinsic cation vibrations of the characteristic spinel structure system. The saturation magnetization (Ms) and coercivity (Hc) of the CoFe2O4 were found to be in the range of 94-33 emu/g, which is still in the range of hard ferrite. The observed variation in saturation magnetization, coercivity and remanence magnetization as a function of increasing the temperature and grain size of samples. From this point of view, nano-scale size of nanoparticles makes them efficient for using in borehole stability maintaining for enhancing oil and gas recovery efficiency improvement. The large value of magnetic pressure (-2.95699) are expected to be useful in oil recovery applications. It has also been found that the choice of nanoparticles for application in oil recovery depends on nature, magnetic and electric properties of the reservoir rock.


Article
Investigation Nano coating for Corrosion Protection of Petroleum Pipeline Steel Type A106 Grade B; Theoretical and Practical Study in Iraqi Petroleum Sector

Authors: M. J. Kadhim --- K. A. Sukkar --- A. S. Abbas --- N. H. Obaeed
Journal: Engineering and Technology Journal مجلة الهندسة والتكنولوجيا ISSN: 16816900 24120758 Year: 2017 Volume: 35 Issue: 10 Part (A) Engineering Pages: 1042-1051
Publisher: University of Technology الجامعة التكنولوجية

Loading...
Loading...
Abstract

In the present investigation, titania (TiO2) nano-thin films were deposited on steel type A106-B, by using the Pulse Laser Deposition (PLD) technique to obtain passive layers of nano-coating. Electrochemical methods (Tafel completion) are used for study corrosion behavior of steel coating. The A106-B specimens were evaluated in 3.5 wt. % NaCl aqueous solution by using polarization technique with pH adjustment to 4.0 in order to determine the corrosion rate. The samples of TiO2 thin films were characterized by SEM, AFM, XRD, and FTIR. The input parameters were substrate temperature (100, 200 and 300) ’0C’, number of pulse (300, 400 and 500) and fluencies energy (800, 900 and 1000) mJ/cm2, have been investigated to detect their impact on corrosion reduction rate using Taguchi methodology orthogonal array and Analysis of Variance (ANOVA).The ANOVA results indicates that number of shoots pulse significantly affecting the corrosion rate in PLD technique, which is highest among the contributions of the other parameters which is (58.03%) about three times of the fluencies energy (19.12%).The results show that the TiO2 deposition on steels offers an excellent corrosion resistance about 99 times as compared with uncoated steel. The optimum conditions to minimum values corrosion rate are: temperature of 300ºC, number of laser pulses at 300, and fluencies energy equal to 1000 mJ/cm2. Finally the optimal parameters that was used to predict the conclusions were (98.6) to the response of corrosion rate.

Listing 1 - 3 of 3
Sort by
Narrow your search

Resource type

article (3)


Language

English (3)


Year
From To Submit

2017 (3)