research centers


Search results: Found 3

Listing 1 - 3 of 3
Sort by

Article
Generalized-hollow lifting modules
مقاسات الرفع المجوفه- المعممة

Author: Wasan Khalid Hasan وسن خالد حسن
Journal: Iraqi Journal of Science المجلة العراقية للعلوم ISSN: 00672904/23121637 Year: 2016 Volume: 57 Issue: 3B Pages: 2089-2093
Publisher: Baghdad University جامعة بغداد

Loading...
Loading...
Abstract

Let R be any ring with identity, and let M be a unitary left R-module. A submodule K of M is called generalized coessential submodule of N in M, if N/K⊆ Rad(M/K). A module M is called generalized hollow-lifting module, if every submodule N of M with M/N is a hollow module, has a generalized coessential submodule of N in M that is a direct summand of M. In this paper, we study some properties of this type of modules.

لتكن R حلقة ذات عنصر محايد و ليكن M مقاسا أحاديا أيسرا على R. يقال عن المقاس M بأنه مقاس رفع مجوف- معمم أذا كان لكل مقاس جزئي N في M بحيث أن M/N أجوف فأن N له مقاس جزئي معمم رديف جوهريا و يكون جمع مباشر. في هذا البحث سوف ندرس خواص هذا النوع من المقاسات و نبرهن بعض النتائج التي تعتبر تعميم لمقاسات الرفع المجوفه.


Article
PURE – SUPPLEMENTED MODULES
( المقاسات النقية المكملة )

Authors: Yasen Sahira Mahmood ساهرة محمود ياسين --- Wasan Khalid Hasan وسن خالد حسن
Journal: Iraqi Journal of Science المجلة العراقية للعلوم ISSN: 00672904/23121637 Year: 2012 Volume: 53 Issue: 4 Pages: 882-886
Publisher: Baghdad University جامعة بغداد

Loading...
Loading...
Abstract

Let R be an associative ring with identity and M be unital non zero right R- module . M is called H– supplemented module if given any submodule A of M there exist a direct summend submodule D of M such that M = A+X iff M= D+X where X is a submodule of M. In this paper we will give a generalization for H– supplemented which is called pure– supplemented module. An R- module M is called pure– supplemented module if given any submodule A of M there exists a pure submodule P of M such that M = A+X iff M= P+X .Equivalently , for every submodule A of M there exist a pure submodule P of M such that << and << .

لتكن R حلقة تجميعية ذات عنصر محايد وليكن M مقاسا احاديا غير صفري ايمن معرفا على R ألمقاس ألجزئي N من M يقال بأنه مكمل من النوع H أذا أعطينا مقاس جزئي A فيوجد مقاس جزئي مجموع مباشرD منM بحيث M = A+X اذذاD+X M= في هذا البحث سنقوم بدراسة المقاسات النقية المكملة حيث قدمنا هذا التعريف كتعميم لمفهوم المقاسات المكملة من النوع H. يقال للمقاس M بانه مكمل نقي أذاأعطينا مقاس جزئي A فيوجد مقاس جزئي نقي P منM بحيث M = A+X اذذاP+X =M


Article
Modules With Chain Conditions On δ -Small Submodules
المقاسات التي تحقق خاصية السلسلة للمقاسات الجزئية δ الصغيرة

Authors: Wasan Khalid Hasan وسن خالد حسن --- Sahira Mahmood Yaseen ساهره محمود ياسين
Journal: Iraqi Journal of Science المجلة العراقية للعلوم ISSN: 00672904/23121637 Year: 2014 Volume: 55 Issue: 1 Pages: 218-223
Publisher: Baghdad University جامعة بغداد

Loading...
Loading...
Abstract

Let R be an associative ring with identity and M be unital non zero R-module. A submodule N of a module M is called a δ-small submodule of M (briefly N << M )if N+X=M for any proper submodule X of M with M/X singular, we have X=M . In this work,we study the modules which satisfies the ascending chain condition (a. c. c.) and descending chain condition (d. c. c.) on this kind of submodules .Then we generalize this conditions into the rings , in the last section we get same results on δ- supplement submodules and we discuss some of these results on this types of submodules.

لتكن R حلقة تجميعية ذات عنصر محايد وليكن M مقاسا احاديا غير صفري ايمن معرفا على R ألمقاس الجزئي N من M يقال بأنه δ صغير اذا كانN+X=M كل مقاس جزئي X من M بحيثM/X منفردا فان X=Mفي هذا البحث سنقوم بدراسة هذا النوع من المقاسات الجزئية والمقاسات التي تحقق خاصيتي السلسلة على المقاسات الجزئية δ صغيرة . كذالك قمنا بتعميم هذه الشروط على الحلقات وفي الجزء الاخير حصلنا على بعض النتائج عن المقاسات الجزئية δ-المكملة وتوضيح بعض نتائجها.

Listing 1 - 3 of 3
Sort by
Narrow your search

Resource type

article (3)


Language

English (3)


Year
From To Submit

2016 (1)

2014 (1)

2012 (1)