research centers


Search results: Found 1

Listing 1 - 1 of 1
Sort by

Article
Using Different Threshold Value in Comparison Some of Methods Wavelet Estimation for Non Parametric Regression Function with Missing Data
استخدام قيم عتبة مختلفة في مقارنة بعض طرائق التقدير المويجي لدالة الانحدار اللامعلمي بوجود بيانات مفقودة

Author: Dhafir H. Rasheed ظافر حسين رشيد
Journal: Al-Rafidain University College For Sciences مجلة كلية الرافدين الجامعة للعلوم ISSN: 16816870 Year: 2016 Issue: 37 Pages: 1-33
Publisher: Rafidain University College كلية الرافدين الجامعة

Loading...
Loading...
Abstract

The problem of missing of some of sample observations is one of the main problems that face researcher during the statistical analysis , the main problem of missing data are as follows damage , negligence, death and morbidity as in the case of clinical studies The presence of such a problem within the data may influence on the analysis and accordingly it may lead to misleading conclusions despite the fact that the wavelet estimations are of high efficiency in estimating the regression function , but it may be influenced by the problem of missing data , in addition to the impact of the problem of miss of accuracy estimation it is not possible to apply these methods because of the miss of one of its conditions which is dyadic sample size .According to the great impact stem from that problem , many researchers who devoted their study to process this problem by using traditional methods in processing missing data , where as the researcher used imputation methods more efficient and effective to process the missing data as a primary stage so that these data will be ready and available to wavelet application, as a result simulation experiment proved that the suggested methods (DRPW) are more efficient and superior to other methods , this paper also includes the auto correction of boundaries problem by using polynomial models , and using different threshold values in wavelet estimations , SINCE the suitable choice of this value is decisive accuracy of these estimations

تعد مشكلة فقدان بعض مشاهدات العينة من اهم المشاكل التي تواجه الباحث اثناء التحليل الاحصائي ، ومن أسباب الفقدان كثيرة كأن تكون التلف والإهمال او موت مرضى كما في الدراسات السريرية . وان وجود مثل هكذا مشكلة ضمن البيانات يؤثر على التحليل وبالتالي يؤدي الى استنتاجات مظللة ، وعلى الرغم من الكفاءة العالية للتقديرات المويجية في تقدير دالة الانحدار الا انها هي الاخرى تتأثر بمشكلة فقدان البيانات ، حيث انه بالاضافة الى تأثير مشكلة الفقدان على دقة التقدير فانه ليس بالامكان تطبيق هذه الطرائق لفقدان احد شروطها وهي حجم العينة الدايديكي .ونظراً للتأثير الكبيرة الناجم عن تلك المشكلة فان الكثير من الباحثين ممن كرسوا بحوثهم لمعالجة تلك المشكلة باستخدام طرائق تقليدية في معالجة البيانات المفقودة ، بينما قام الباحث باستخدام طرائق تعويض اكثر كفاءة لمعالجة البيانات المفقودة كمرحلة اولى كي تصبح البيانات جاهزة للتطبيق المويجي وقد اثبتت تجارب المحاكاة كفاءة الطرائق المقترحة على بقية الطرائق الاخرى ، كذلك تضمن البحث التصحيح التلقائي لمشكلة الحدودية عن طريق استخدام نموذج متعدد الحدود بالاضافة الى استخدام قيم عتبة مختلفة ضمن التقديرات المويجية كون ان الاختيار المناسب لقيمة العتبة يكون حاسم في دقة تلك التقديرات.

Listing 1 - 1 of 1
Sort by
Narrow your search

Resource type

article (1)


Language

Arabic (1)


Year
From To Submit

2016 (1)