research centers


Search results: Found 1

Listing 1 - 1 of 1
Sort by

Article
A Comparison of Corner Feature Detectors for Video Abrupt Shot Detection

Authors: Matheel E. Abdulmunem --- Eman Hato
Journal: Al-Nahrain Journal of Science مجلة النهرين للعلوم ISSN: (print)26635453,(online)26635461 Year: 2018 Volume: 21 Issue: 3 Pages: 169-179
Publisher: Al-Nahrain University جامعة النهرين

Loading...
Loading...
Abstract

Comparison of feature detectors and evaluation of their performance is very important in computer vision. A new algorithm is proposed in this paper to compare the performance of four corner feature detectors based on abrupt shot boundary detection. The proposed algorithm consists of two stages: feature vectors generation where corner detector for all video frames is computed to obtain the descriptor feature vectors, and features matching where the number of matching features between two successive frames is calculated. The corner feature detectors used in this paper are BRISK, Harries, MinEigen, and FAST. Experimental results indicate that the proposed algorithm using MinEigen features detector provides better performance than other features detectors where the average value of recall, precision, and F measure is 0.99083, 0.98808, and 0.98875 for selected testing videos respectively. The results also show that the FAST is superior to others feature detectors when considering execution time.

Keywords

Abrupt dedication --- BRISK --- FAST --- Harries --- MinEigen.

Listing 1 - 1 of 1
Sort by
Narrow your search

Resource type

article (1)


Language

English (1)


Year
From To Submit

2018 (1)