research centers

Search results: Found 1

Listing 1 - 1 of 1
Sort by

In Silico Model for Lung Cancer Prediction Based on TP53 mutations Using Neural Network

Authors: Ban Nadeem Dhannoon --- Zahraa Naser Shahweli
Journal: Al-Nahrain Journal of Science مجلة النهرين للعلوم ISSN: (print)26635453,(online)26635461 Year: 2018 Volume: 00 Issue: 1 Pages: 196-201
Publisher: Al-Nahrain University جامعة النهرين


In silico models have become well known in the current decade because they assist researchers and specialists in organizing and analyzing big data. To complete their work, these models require powerful techniques and algorithms, the most important of which are machine learning algorithms. This work utilizes the Relief F algorithm for feature selection and trains the back propagation neural network (BPNN) algorithm on the UMD TP53 all-2012-R1-US database for lung cancer. Lung cancer is the most commonly diagnosed cancer among women and men, and can be predicted from mutations that occur in the TP53 tumor suppressor gene. Five measures are used to estimate performance: sensitivity and specificity are important dimensions utilized to obtain the receiver operating characteristic (ROC) curve; accuracy and F measure are necessary to determine algorithm precision; and Matthews correlation coefficient (MCC), which is the most important measure, provides the right criterion for classification algorithms. The Relief F and BPNN algorithms achieve satisfactory results that reach 99.41 for sensitivity, 95.39 for specificity, 99.04 for accuracy, 99.47 for F measure, and 0.93 for MCC.

Listing 1 - 1 of 1
Sort by
Narrow your search

Resource type

article (1)


English (1)

From To Submit

2018 (1)