research centers


Search results: Found 3

Listing 1 - 3 of 3
Sort by

Article
A Multi-Objective Evolutionary Algorithm based Feature Selection for Intrusion Detection
اختيار الميزة المعتمد على الخوارزمية التطورية متعددة الاهداف لكشف التطفل

Authors: Dhuha I. Mahmood ضحى عماد محمود --- Sarab M. Hameed سراب مجيد حميد
Journal: Iraqi Journal of Science المجلة العراقية للعلوم ISSN: 00672904/23121637 Year: 2017 Volume: 58 Issue: 1C Pages: 536-549
Publisher: Baghdad University جامعة بغداد

Loading...
Loading...
Abstract

Nowad ays, with the development of internet communication that provides many facilities to the user leads in turn to growing unauthorized access. As a result, intrusion detection system (IDS) becomes necessary to provide a high level of security for huge amount of information transferred in the network to protect them from threats. One of the main challenges for IDS is the high dimensionality of the feature space and how the relevant features to distinguish the normal network traffic from attack network are selected. In this paper, multi-objective evolutionary algorithm with decomposition (MOEA/D) and MOEA/D with the injection of a proposed local search operator are adopted to solve the Multi-objective optimization (MOO) followed by Naïve Bayes (NB) classifier for classification purpose and judging the ability of the proposed models to distinguish between attack network traffic and normal network traffic. The performance of the proposed models is evaluated against two baseline models feature vitality based reduction method (FVBRM) and NB. The experiments on network security laboratory-knowledge discovery and data mining (NSL-KDD) benchmark dataset ensure the ability of the proposed MOO based models to select an optimal subset of features that has a higher discriminatory power for discriminating attack from normal over the baselines models. Furthermore, the proposed local search operator ensures its ability to harness the performance of MOO model through achieving an obvious feature reduction on average from 16.83 features to 8.54 features (i.e., approximately 50%) in addition to the increase in NB classifier accuracy from 98.829 to 98.859 and detection rate from 98.906 to 99.043.

في الوقت الحاضر، مع تطور الاتصالات عبر الانترنيت والتي تقدم العديد من التسهيلات للمستخدم يؤدي ذلك بدوره الى تزايد الوصول غير المصرح به. ونتيجة لذلك، اصبح نظام كشف التطفل ضروري لتوفير مستوى عالي من الأمن لكمية كبيرة من المعلومات المنقولة في الشبكة لحمايتها من التهديدات. واحدة من التحديات الرئيسية لكشف التطفل هي الأبعاد العالية من فضاء الميزة وكيفية تحديد الميزات ذات الصلة لتمييز حركة المرور الطبيعية على الشبكة من الهجوم. في هذا البحث، اعتمدت الخوارزمية التطورية متعددة الاهداف مع التحلل (MOEA/D) و (MOEA/D) مع حقن مشغل البحث المحلي المقترح لحل مشكلة امثلية تعدد الاهداف يليه المصنف نيف بايز (NB) لغرض التصنيف والحكم على قدرة النماذج المقترحة للتمييز بين حركة المرور الطبيعية على الشبكة من الهجوم. اداء النماذج المقترحة تم تقييمه بالمقارنة مع نموذجين من النماذج الاساسية وهي (FVBRM) و NB. تضمن التجارب على البيانات القياسية (NSL-KDD) قدرة النماذج المقترحة المعتمدة على امثلية تعدد الاهداف على اختيار امثل مجموعة فرعية من الميزات التي لديها اعلى طاقة تمييزية لتمييز الهجوم من الطبيعي بالمقارنة مع النماذج الاساسية. وعلاوة على ذلك، ان مشغل البحث المحلي المقترح يضمن قدرته على الاستفادة من اداء نموذج امثلية تعدد الاهداف الذي حقق تقليل واضح للميزات بمعدل من 16.83 الى 8.54 ميزة (اي مايقارب %50) بالأضافة الى زيادة دقة مصنف نيف بايز (NB) من 98.829 الى 98.859 ومعدل الكشف من 98.906 الى 99.043.


Article
Extractive Multi-Document Text Summarization Using Multi-Objective Evolutionary Algorithm Based Model
التلخيص الأقتطاعي للنصوص متعددة المستندات باستخدام نموذج مستند على الخوارزمية التطورية متعددة الاهداف

Authors: Hilal H. Saleh هلال هادي صالح --- Nasreen J. Kadhim نسرين جواد كاظم
Journal: Iraqi Journal of Science المجلة العراقية للعلوم ISSN: 00672904/23121637 Year: 2016 Volume: 57 Issue: 1C Pages: 728-741
Publisher: Baghdad University جامعة بغداد

Loading...
Loading...
Abstract

Automatic document summarization technology is evolving and may offer a solution to the problem of information overload. Multi-document summarization is an optimization problem demanding optimizing more than one objective function concurrently. The proposed work considers a balance of two significant objectives: content coverage and diversity while generating a summary from a collection of text documents. Despite the large efforts introduced from several researchers for designing and evaluating performance of many text summarization techniques, their formulations lack the introduction of any model that can give an explicit representation of – coverage and diversity – the two contradictory semantics of any summary. The design of generic text summarization model based on sentence extraction is modeled as an optimization problem redirected into more semantic measure reflecting individually both content coverage and content diversity as an explicit individual optimization models. The proposed two models are then coupled and defined as a multi-objective optimization (MOO) problem. Up to the best of our knowledge, this is the first attempt to address text summarization problem as a MOO model. Moreover, heuristic perturbation and heuristic local repair operators are proposed and injected into the adopted evolutionary algorithm to harness its strength. Assessment of the proposed model is performed using document sets supplied by Document Understanding Conference 2002 (DUC 2002) and a comparison is made with other state-of-the-art methods using Recall-Oriented Understudy for Gisting Evaluation (ROUGE) toolkit. Results obtained support strong proof for the effectiveness of the proposed model based on MOO over other state-of-the-art models.

تقنية التلخيص الأوتوماتيكي تطور وربما تقدم حل الى مشكلة الحمل الزائد للمعلومات. عملية التلخيص للنصوص متعددة المستندات تصنف على انها مشكلة أمثلية تتطلب الاستفادة المثلى من اكثر من دالة هدف في وقت واحد. العمل المقترح يأخذ بنظر الأعتبار تحقيق التوازن بين هدفين مهمين هما: تغطية المحتوى لمجموعة المستندات والتنوع عند توليد ملخص من مجموعة من المستندات النصية. على الرغم من الجهود القائمة على تصميم و تقييم أداء العديد من تقنيات تلخيص النصوص, تفتقر صياغات هذه التقنيات الى تقديم أي نموذج يمكن أن يعطي التمثيل الصريح – تغطية المحتوى والتنوع – وهما دلالتان متناقضتان في أي ملخص. أن تصميم نموذج يهدف الى تلخيص نص عام قائم على أقتطاع الجمل تمت أعادة توجيهه الى تدبير ذات دلالة اكبر يعكس بصورة مستقلة كلا من تغطية وتنوع المحتوى كنموذجي أمثلية صريحين. بعد ذلك تمت عملية اقتران النموذجين المقترحين وتعريفهما كمشكلة أمثلية تعدد الاهداف. حسب علمنا ، هذه هي المحاولة الأولى لمعالجة مشكلة تلخيص النصوص كنموذج أمثلية متعدد الأهداف. وعلاوة على ذلك ، تم أقتراح عامل توجيه اضطراب وعامل توجيه أصلاح محلي وحقنهما في الخوارزمية التطورية المعتمدة لتسخير قوتها . عملية تقييم النموذج المقترح تمت باستخدام مجموعة المستندات المجهزة من قبل مجموعة البيانات العالمية (Document Understanding Conference DUC 2002) وقد تمت مقارنة النتائج المتحصلة مع مجموعة من الانظمة الحديثة. قياس وتقييم الأداء للنموذج المقترح تم باستخدام أدوات (ROUGE). النتائج المتحصلة دعمت العمل بدليل قوي على فعالية النموذج المقترح المستند على أمثلية تعدد الاهداف نسبة الى النماذج الحديثة التي تمت المقارنة بها.


Article
Improving Extractive Multi-Document Text Summarization Through Multi-Objective Optimization

Authors: Nasreen J. Kadhim --- Hilal H. Saleh --- Bara’a Attea
Journal: Iraqi Journal of Science المجلة العراقية للعلوم ISSN: 00672904/23121637 Year: 2018 Volume: 59 Issue: 4B Pages: 2135-2149
Publisher: Baghdad University جامعة بغداد

Loading...
Loading...
Abstract

Multi-document summarization is an optimization problem demanding optimization of more than one objective function simultaneously. The proposed work regards balancing of the two significant objectives: content coverage and diversity when generating summaries from a collection of text documents. Any automatic text summarization system has the challenge of producing high quality summary. Despite the existing efforts on designing and evaluating the performance of many text summarization techniques, their formulations lack the introduction of any model that can give an explicit representation of – coverage and diversity – the two contradictory semantics of any summary. In this work, the design of generic text summarization model based on sentence extraction is redirected into more semantic measure reflecting individually both content coverage and content diversity as two explicit optimization models. The problem is defined by projecting the first criterion, i.e. content coverage in the light of text similarity. The proposed model hypothesizes a possible decomposition of text similarity into three different levels of optimization formula. First, aspire to global optimization, the candidate summary should cover the summary of the document collection. Then, to attain, less global optimization, the sentences of the candidate summary should cover the summary of the document collection. The third level of optimization is content with local optimization, where the difference between the magnitude of terms covered by the candidate summary and those of the document collection should be small. This coverage model is coupled with a proposed diversity model and defined as a Multi-Objective Optimization (MOO) problem. Moreover, heuristic perturbation and heuristic local repair operators have been proposed and injected into the adopted evolutionary algorithm to harness its strength. Assessment of the proposed model has been performed using document sets supplied by Document Understanding Conference 2002 (DUC2002) and a comparison has been made with other state-of-the-art methods. Metric used to measure performance of the proposed work is Recall-Oriented Understudy for Gisting Evaluation (ROUGE) toolkit. Results obtained support strong proof for the effectiveness and the significant performance awarded to the proposed MOO model over other state-of-the-art models.

Listing 1 - 3 of 3
Sort by
Narrow your search

Resource type

article (3)


Language

English (3)


Year
From To Submit

2018 (1)

2017 (1)

2016 (1)