research centers


Search results: Found 2

Listing 1 - 2 of 2
Sort by

Article
Study of the Performance of Paraffin Wax as a Phase Change Material in Packed Bed Thermal Energy Storage System

Loading...
Loading...
Abstract

The present work deals with an experimental investigation of charging and discharging processes in thermal storage system using a phase change material PCM. Paraffin wax was used as the PCM which is formed in spherical capsules and packed in a cylindrical packed column which acted as an energy storage system. Air was used as the heat transfer fluid HTF in thermal storage unit. The effect of flow rate and inlet temperature of HTF on the time of charging and discharging process were studied. The results showed that the faster storage of thermal energy can be made by high flow rate of heat transfer fluid HTF and high inlet temperature of heat transfer fluid. It was found that at 65°C HTF inlet temperature, the melting and solidification processes accelerated by 27.9% and 57.14% respectively, when the flow rate was increased from 9 to 24 L/s. Also, when the HTF inlet temperature changed from 65°C to 80°C, the time needed to complete melting process decreased by 38.8%.


Article
Numerical Modeling for Novel Solar Air Heater Utilizing Wax Paraffin-PCM

Authors: Jalal M. Jalil --- Saleh E. Najim --- Salah M. Salih
Journal: Basrah Journal for Engineering Science مجلة البصرة للعلوم الهندسية ISSN: Print: 18146120; Online: 23118385 Year: 2019 Volume: 19 Issue: 2 Pages: 1-8
Publisher: Basrah University جامعة البصرة

Loading...
Loading...
Abstract

A mathematical model to analysis three–dimensional forced convection turbulent flow in a novel solar air heater integrated with multiple rectangular capsules filled by paraffin wax-based on phase change material PCM was implemented. The investigations were performed under three airflow speed of (0.6, 1.2, and 1.8) kg/min and average solar flux of 625 W/m2. The results revealed that the delaying melting time and also lower the melting temperature of PCM by increasing airflow speed during the charging process. As well as, the freezing period is dependent on the airflow speed by inverse relation. Also, the data results represent that the useful energy rate and thermal storage efficiency were a strong dependence on the airflow speed. Moreover, it can be detected that the optimal freezing time and the air temperature rise of the heater were reached about 210 minutes with (12 – 1.5 °C), 150 minutes with (7.5 – 1.4°C), and 120 minutes with (5.5 – 1.5 °C), at airflow speed of 0.6, 1.2, and 1.8 kg/min, respectively, which can be used at night to supply some applications by thermal energy such as heating buildings and drying agricultural crops.

Listing 1 - 2 of 2
Sort by
Narrow your search

Resource type

article (2)


Language

English (2)


Year
From To Submit

2019 (1)

2016 (1)