research centers


Search results: Found 3

Listing 1 - 3 of 3
Sort by

Article
Addition of Super Absorbent Polymer for Upgrading of Cement Quality in Iraqi Oil Wells

Authors: Faleh H. M. Almahdawi --- Dhorgham Skban Ibrahim
Journal: Iraqi Journal of Chemical and Petroleum Engineering المجلة العراقية للهندسة الكيمياوية وهندسة النفط ISSN: 19974884/E26180707 Year: 2016 Volume: 17 Issue: 3 Pages: 83-90
Publisher: Baghdad University جامعة بغداد

Loading...
Loading...
Abstract

This study focuses on the use of an optimum amount of Sodium Polyacrylate (SP) for designing cement slurry with the high performance of rheological properties and displacement efficiency. A laboratory study has been carried out on the cement slurry which prepared with SP as superabsorbent polymer. SP has been providing an internal water source that helps in the hydration process, and curing and ultimately increases the cement strength. Also improves the cement performance by improving the cement stability. Several batches were prepared to determine the proper amount of SP to add it in the cement slurry. Also, we studied its effect on cement density, amount of free water in order to observe the rheological properties, and thickening time. Results indicate that the designed cement rheological properties are directly influenced by the shear rate and shear stress on the mix and pump of the cement with the increase of the SP concentration for the rheological improvement. Laboratory data are presented to highlight Polyacrylate’s positive effect on compressive strength, fluid loss control, and free water.


Article
Flexural Behavior of High Strength Concrete Incorporated Super Absorbent Polymer (SAP)

Journal: DIYALA JOURNAL OF ENGINEERING SCIENCES مجلة ديالى للعلوم الهندسية ISSN: 19998716/26166909 Year: 2018 Volume: 11 Issue: 3 Pages: 34-38
Publisher: Diyala University جامعة ديالى

Loading...
Loading...
Abstract

This research include the study of flexural behavior of reinforced concrete beams with and without addition of super absorbent polymer (SAP) to concrete, two groups of concrete mixture were used; each one have five concrete mixture (Reactive Powder Concrete RPC, Modified Reactive Powder Concrete, Self Compact Concrete SCC, High Strength Concrete HSC and Normal Strength Concrete NSC) four of them with high compressive strength and the last one with normal compressive strength. Group A casting concrete without addition of SAP, group B casting concrete with addition of SAP. Ten beams are molded of (200*300*1700) mm dimension with same steel reinforcement. Flexural tested for all beams was doing and load-deflection relationships of beams with and without SAP were established. Test results had shown that beams casting with addition of SAP (group B) proved to have larger load carrying capacity and llower deflection compared with group A.


Article
Eliminating the Shrinkage of High Strength Concrete by using Super Absorbent Polymer (SAP)

Authors: Suhad M Abd --- Baidaa Khdheer Ahmed
Journal: DIYALA JOURNAL OF ENGINEERING SCIENCES مجلة ديالى للعلوم الهندسية ISSN: 19998716/26166909 Year: 2018 Volume: 11 Issue: 4 Pages: 8-13
Publisher: Diyala University جامعة ديالى

Loading...
Loading...
Abstract

High Strength Concrete (HSC) is one of the most popular types of concrete used in the world. This type of concrete has a low rapid hydration of cementation materials with low w/cm and the external surrounding environment condition exposed the HSC to high autogenous shrinkage. If this shrinkage is not treated well that well led to cracking, in this case HSC need to convenient curing necessary at the earliest time. This study presents the use of Super Absorbent Polymer (SAP) as internal curing agent to eliminate shrinkage. Two types of shrinkage are tested in this study (Autogenous shrinkage and drying shrinkage). Two groups of concrete mixes(A and B) are studied in this study each group have five types of concrete mixes, four mixes with high and ultra-high compressive strength (RPC, MRPC, HSC and SCC) and the last one with normal compressive strength (NSC). Group A represent concrete mixes without SAP addition and group B for concrete mixes with SAP. SAP was added for all mixes at 0.3% by weight of cement and adding 20ml water for each gram of SAP, specimens with dimensions (40*40*160) mm were used for testing shrinkage for each mix with and without SAP, average values for two specimens was taken as a results. It was found that concrete mixes of group B have lower shrinkage than the shrinkage of concrete mixes in group A at 28 days age with reduction of autogenous shrinkage(AS) of (57%, 35%, 37%, 44.5% and 37.5%) respectively and for drying shrinkage the percentage of reduction was (89.5%, 72%, 82%, 70% and 71%) respectively, addition of SAP to concrete mixes proves to have active effect in reducing the shrinkage of concrete.

Listing 1 - 3 of 3
Sort by
Narrow your search

Resource type

article (3)


Language

English (3)


Year
From To Submit

2018 (2)

2016 (1)